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Abstract
Background: During gram-negative sepsis, lipopolysaccharide (LPS) induces tissue factor
expression on monocytes. The resulting disseminated intravascular coagulation leads to tissue
ischemia and worsens the prognosis of septic patients. There are indications, that fever reduces the
mortality of sepsis, the effect on tissue factor activity on monocytes is unknown. Therefore, we
investigated whether heat shock modulates LPS-induced tissue factor activity in human blood.

Methods: Whole blood samples and leukocyte suspensions, respectively, from healthy probands
(n = 12) were incubated with LPS for 2 hours under heat shock conditions (43°C) or control
conditions (37°C), respectively. Subsequent to further 3 hours of incubation at 37°C the clotting
time, a measure of tissue factor expression, was determined. Cell integrity was verified by trypan
blue exclusion test and FACS analysis.

Results: Incubation of whole blood samples with LPS for 5 hours at normothermia resulted in a
significant shortening of clotting time from 357 ± 108 sec to 82 ± 8 sec compared to samples
incubated without LPS (n = 12; p < 0.05). This LPS effect was mediated by tissue factor, as inhibition
with active site-inhibited factor VIIa (ASIS) abolished the effect of LPS on clotting time. Blockade of
protein synthesis using cycloheximide demonstrated that LPS exerted its procoagulatory effect via
an induction of tissue factor expression. Upon heat shock treatment, the LPS effect was blunted:
clotting times were 312 ± 66 s in absence of LPS and 277 ± 65 s in presence of LPS (n = 8; p >
0.05). Similarly, heat shock treatment of leukocyte suspensions abolished the LPS-induced tissue
factor activity. Clotting time was 73 ± 31 s, when cells were treated with LPS (100 ng/mL) under
normothermic conditions, and 301 ± 118 s, when treated with LPS (100 ng/mL) and heat shock (n
= 8, p < 0.05). Control experiments excluded cell damage as a potential cause of the observed heat
shock effect.

Conclusion: Heat shock treatment inhibits LPS-induced tissue factor activity in human whole
blood samples and isolated leukocytes.
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Background
Gram-negative sepsis is mediated by lipopolysaccharide
(LPS), a bacterial membrane constituent, which activates
toll like receptor 4 (TLR-4). The resulting complex biolog-
ical responses include an activation of the immune,
inflammatory and coagulation systems [1-4]. While active
tissue factor is absent in the peripheral blood under phys-
iological conditions, the activation of hemostasis during
sepsis is mediated by the expression of tissue factor on the
surface of monocytes [5,6]. Intravascular tissue factor
expression is of striking pathophysiological importance:
the resulting activation of coagulation leads to dissemi-
nated intravascular coagulation, intravascular fibrin depo-
sition, tissue ischemia and cell damage [7,8]. The
importance of the coagulation system during sepsis is fur-
ther highlighted by the fact, that recombinant activated
protein C, a natural inhibitor of coagulation, is the only
causative principle to improve the prognosis of this dis-
ease in humans [9].

There is strong evidence that temperature affects the
immune response in humans and it has been suggested
that fever might improve the prognosis of human sepsis
[10-15]. In addition, it has been demonstrated that heat
stress increases the survival rate subsequent to LPS-treat-
ment in rats and reduces LPS-induced tumour necrosis
factor (TNF) levels as well as vascular permeability in mice
[16-18]. Therefore, we investigated whether heat shock
affects LPS-induced activation of coagulation via a reduc-
tion of tissue factor expression.

Methods
Blood sampling
Venous blood was drawn from the antecubital vein of
healthy volunteers (n = 12). After discarding the first 2
mL, blood was collected in one tenth volume of citrate
(3.8 %, Becton Dickinson Vacutainer™) and samples were
immediately used for the experiments. The ethical princi-
ples as set out in the Declaration of Helsinki were hon-
ored in the present study.

Fractionation of whole blood samples
To obtain platelet poor plasma, whole blood aliquots
were centrifuged at 2000 × g for 20 minutes. Absence of
both leukocytes and platelets in platelet poor plasma was
verified by transmission microscopy. Preparation of leu-
kocytes was performed as recently described [19]. In short,
30 ml blood was drawn in a 50 ml syringe containing 5 ml
of ACD-A (citrate 95 mmol/l, glucose 152 mmol/l, ade-
nine). Thereafter, 6 ml hydroxyethylstarch (6 %) was
added and red blood cells were allowed to sediment for
60 minutes. The cell rich supernatant was then centrifuged
at 150 × g for 5 minutes. Thereafter, the leukocyte pellet
was reconstituted in phosphate buffered saline (PBS) to
30.000 cells/µL and incubated as described below.

Incubation of blood components with LPS
(i) For heat shock treatment, whole blood samples were
incubated first at 43°C (2 hours) and then at 37°C (3
hours) with LPS (final concentration 100 µg/mL) or vehi-
cle (NaCl 0.9 %). Furthermore, whole blood samples
were incubated for 5 hours at 37°C with LPS or vehicle
under otherwise identical conditions. Thereafter, clotting
time of recalcified samples (400 µL) was determined
using a KC 4 coagulometer (Amelung, Germany). Further-
more, both vehicle and LPS-treated whole blood samples
were subjected to FACS analysis as described below. (ii)
Identical incubation steps as outlined in (i) were per-
formed with leukocyte suspensions instead of whole
blood samples (final LPS-concentration was 100 ng/mL).
In this series, clotting time was determined subsequent to
the addition of three volumes citrated platelet poor
plasma (to obtain a leukocyte count of 7500 cells/µL) and
recalcification of the samples. Note, that the LPS concen-
tration was thousand-fold lower in leukocyte suspension,
as the reduced protein amount in these experiments
reduces binding of LPS in comparison to whole blood
experiments (for details: see discussion). Furthermore, the
effects of heat shock and LPS on the cellular integrity of
leukocytes was determined using the trypan blue exclu-
sion test. Trypan blue 0.2 % was added to the suspensions
for 20 minutes, thereafter cells were sedimented by cen-
trifugation and reconstituted in PBS. The ratio of defect to
intact leukocytes was calculated by judging trypan blue
uptake of 500 leukocytes by light microscopy. (iii) To
investigate the involvement of protein synthesis in the
LPS-induced shortening of clotting time, whole blood
samples were pretreated with cycloheximide (35 µg/mL)
or vehicle for 30 minutes. Thereafter, LPS (100 µg/mL) or
vehicle were added to the samples followed by incubation
at 37°C for 5 hours and determination of clotting time.
(iv) In a further series, active site-inhibited factor VIIa
(ASIS, 50 µg/mL) was used to determine the importance
of tissue factor for the observed LPS-effect on coagulation.
Blood samples were incubated with LPS or vehicle for 5
hours at normothermia. Thereafter, ASIS was added and
clotting time was measured ten minutes later [20].

Flow cytometry
For immunolabeling of monocytes phycoerythrin-
labelled mouse anti-CD 14 antibodies (BD Biosciences,
Heidelberg, Germany) were used, leukocytes were identi-
fied using peridin chlorophyll labelled mouse antibodies
against CD45 (BD Biosciences, Heidelberg, Germany). 5
µL of these antibodies were added to 10 µL citrate-antico-
agulated blood in 35 µL PBS. Incubation time was 15
minutes. Immunolabeling was stopped by adding 1 mL
PBS. For flow cytometry, a FACS Calibur (BD Biosciences,
Heidelberg, Germany), gated for the detection of mono-
nuclear cells, was used. WinMDI 2.8 (written by Joe Trot-
ter) was used to present and calculate the results.
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Materials
LPS (Escherichia coli; serotype 0.111:B4) was obtained
from Sigma-Aldrich, Germany. Hydroxyethylstarch
(Voluven) was purchased from Fresenius Kabi, Germany.
Active site-inhibited factor VIIa (ASIS) was a generous gift
from Novo Nordisk, Denmark. All other reagents were of
analytical grade.

Statistics
All data are presented as mean and standard deviation.
For statistical evaluation, the Mann-Whitney-Test was
used and statistical significance was assumed with p-val-
ues below 0.05 (Openstat).

Results
In a first series, we investigated the effects of LPS on clot-
ting time: incubation of whole blood samples with LPS
(100 µg/mL) shortened clotting time from 357 ± 108 sec
to 82 ± 8 sec (n = 12; p < 0.05) when samples were incu-
bated at 37°C for 5 hours (Figure 1). When samples were
incubated for 2 hours at 43°C followed by 3 hours of
incubation at 37°C, the LPS effect was completely abol-
ished (Figure 1). Clotting time in whole blood samples
treated with hyperthermia was 312 ± 66 sec in the absence
of LPS (p < 0.05) and 277 ± 65 sec in the presence of LPS
(p > 0.05).

The importance of protein synthesis for the LPS-induced
shortening of clotting time was investigated in a further

series. When whole blood samples were preincubated
with the protein synthesis inhibitor cycloheximide (35
µg/mL), the effect of LPS on clotting time, determined 5
hours after incubation at 37°C, was blunted (Figure 2). To
identify the LPS-induced clotting activity, active-site
inhibited factor VIIa (50 µg/mL) was used. The LPS-
induced activation of coagulation was completely inhib-
ited in the presence of the tissue factor inhibitor (Figure
2). These results demonstrate that LPS exerts its action via
de novo protein synthesis of tissue factor.

To determine the cell type which expresses tissue factor,
we investigated the effects of hyperthermia on LPS-
induced tissue factor expression in freshly isolated leuko-
cytes. Leukocytes were incubated under normothermic or
hyperthermic conditions in the presence or absence of
LPS accordant to the protocol for whole blood experi-
ments. Thereafter, platelet poor plasma was added and the
clotting time as an indicator for tissue factor expression
was measured (Figure 3). Under normothermic condi-
tions, LPS shortened clotting time from 371 ± 72 s to 73 ±
31 s. Heat shock did not affect clotting time in absence of
LPS (412 ± 70 s), but markedly reduced the clotting time
in presence of the endotoxin (301 ± 118 s). The results
demonstrate that expression of tissue factor in isolated
leukocytes is inhibited by heat shock and that temperature
dependent degradation of plasma constituents cannot
explain the effects of hyperthermia. We used a lower LPS

Effects of protein synthesis inhibition and tissue factor block-ade on the LPS-induced shortening of clotting timeFigure 2
Effects of protein synthesis inhibition and tissue factor block-
ade on the LPS-induced shortening of clotting time. Whole 
blood samples were incubated with LPS (100 µg/mL) or vehi-
cle (CON) in presence and absence of the protein synthesis 
inhibitor cycloheximide and the inhibitor of tissue factor 
effects, active site inhibited factor seven (ASIS), respectively. 
Results are shown as mean and standard deviation of 6 
experiments per group. *: p < 0.05

Effect of heat shock on the LPS-induced shortening of clot-ting time in whole blood samplesFigure 1
Effect of heat shock on the LPS-induced shortening of clot-
ting time in whole blood samples. Whole blood samples, sup-
plemented with LPS (100 µg/mL final concentration, LPS) or 
vehicle (CON), were incubated under heat shock conditions 
(2 hours at 43°C, 3 hours at 37°C) or normothermia (5 
hours at 37°C). Thereafter, samples were recalcified and 
clotting time was determined. Results are shown as mean 
and standard deviation of 12 experiments per group. *: p < 
0.05.
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concentration in leukocyte experiments when compared
to whole blood experiments (100 ng/mL vs. 100 µg/mL),
because it is well known that LPS is incorporated into
plasma proteins and erythrocyte membranes resulting in
a far lower concentration of free endotoxin [21-25].

Various control experiments were performed to assure cell
integrity after hyperthermia. Leukocyte count, which was
in the range of 5400–8600/µL was not affected by hyper-
thermia and LPS. Furthermore, the rate of defect leuko-
cytes, as determined by the trypan blue exclusion test, was
not different under these conditions.

More specifically, the effects of hyperthermia and LPS-
treatment on monocytes was investigated using FACS
analysis, as this cell type represents the main source of tis-
sue factor in the blood stream [5]. Monocytes were identi-
fied by labelling whole blood samples with fluorescent
CD14-antibodies. A typical contour plot showing CD14-
fluorescence and forward scatter of the FACS analysis is
shown in Figure 4. Relation of monocytes to leukocytes
was not affected by hyperthermia and LPS: relation of
CD14 positive events to all events was in the range of
0.037 to 0.041. As a further proof of cell integrity, no dif-
ference in the forward- and sideward scatter characteristics
of monocytes was observed, the amount of cell detritus, as
judged from CD14-positive events with reduced forward
scatter, was not different (Figure 5).

Discussion
The present study indicates that hyperthermia inhibits the
LPS-induced de novo synthesis of tissue factor in human
whole blood and leukocyte suspensions. The effect of
hyperthermia was demonstrated to be specific, because
cellular integrity was not affected by heat shock treatment.

Tissue factor, an integral membrane protein, is the princi-
ple activator of coagulation in vivo. The protein is
expressed on the surface of many cell types and initiates
hemostasis in the case of vascular damage [26]. Under
physiological conditions, active tissue factor is undetecta-
ble in the peripheral blood [6]. During sepsis, however,
disseminated intravascular coagulation is a common find-
ing and intravascular tissue factor expression is the major
reason for septic coagulopathy. It has been demonstrated
in recent studies that monocytes are the most important
source of tissue factor expression during sepsis [5]. The
disseminated intravascular coagulation is of striking
pathophysiological importance as it leads to perfusion
disturbances, tissue ischemia and septic organ dysfunc-
tion [7,8]. The importance of blood-borne tissue factor in
the pathogenesis of sepsis is highlighted by the fact that
administration of tissue factor pathway inhibitor and
antithrombin exerts beneficial effects in animal sepsis
models [3]. Furthermore, recombinant activated protein
C proved to be the first pharmacological principle to
reduce the mortality of sepsis in humans [9].

Since activation of coagulation induced by intravascular
tissue factor contributes to the poor prognosis of sepsis,
any intervention reducing the expression of tissue factor
would be beneficial. There is good evidence that body
temperature can influence the prognosis of sepsis [11-15].

FACS analysis showing a contour plot of anti-CD14 fluores-cence versus forward scatterFigure 4
FACS analysis showing a contour plot of anti-CD14 fluores-
cence versus forward scatter. Monocytes are separated from 
other leukocytes by the more than 100-fold increase in fluo-
rescence.Effects of hyperthermia on LPS-induced tissue factor activity of leukocyte suspensionsFigure 3

Effects of hyperthermia on LPS-induced tissue factor activity 
of leukocyte suspensions. LPS (100 ng/mL) or vehicle (CON) 
was added to freshly isolated leukocytes suspended in PBS, 
which were then incubated under heat shock conditions or 
normothermia. Thereafter, platelet poor plasma was added 
to the samples and clotting time as a measure of tissue factor 
was determined. Results are shown as mean and standard 
deviation of 8 experiments per group. *: p < 0.05
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Our study demonstrates that hyperthermia inhibits LPS-
induced tissue factor formation in whole blood samples.
Experiments were performed with whole blood samples,
because important constituents of the complex network
of coagulation and immune system are present in this
model in physiological concentrations. Furthermore,
monocyte count resembles in vivo conditions and an acti-
vation of cells by isolation steps cannot occur. We chose 2
hours of incubation for we aimed to mimick fever, which
commonly lasts for a prolonged time. It is important to
note that the effectivity of LPS in whole blood experi-
ments is lower than in typical cell culture experiments.
The reasons include binding of LPS to plasma proteins
and red blood cells [21-23] Therefore, very low plasma
concentrations (300 pg/mL, [24]) are accompanied by a
huge LPS content of erythrocyte membranes (77 µg/mL,
[25]). According to this fact, LPS induced tissue factor for-
mation in our crude leukocyte suspension at a far lower
concentration (100 ng/mL). The experiments with leuko-
cyte suspensions demonstrated that heat shock inhibits
LPS-induced tissue factor in cell suspensions devoid of
plasma constituents, erythrocytes and thrombocytes.
Thus, heat shock has a direct effect on leukocytes. An
effect of hyperthermia and LPS on plasma components,
e.g. degradation, can be excluded by this series because
leukocytes were incubated in plasma free buffer and
plasma was added after the incubation. For the determi-
nation of tissue factor we used a functional clotting assay
in the present study. The advantage of this approach is
that only functional active tissue factor is measured. In
contrast, antibody based assays most likely detect non
functional tissue factor fragments. Another often used
activity based assay, which evaluates factor Xa generation

in the presence of very high factor VIIa levels, detects sol-
uble tissue factor, which has negligible activity at physio-
logical factor VIIa levels (for details see [6]).

The degree of hyperthermia used in our study is com-
monly used for heat shock experiments and is also used
for hyperthermic therapy in humans [17,18]. Most cell
types (except nervous tissue) are not damaged by temper-
atures of 44°C [27]. For these reasons, cell damage cannot
explain the observed inhibition of tissue factor activity.
However, to further confirm the integrity of the leukocytes
in our experiments, we performed several control experi-
ments. Neither total leukocyte count nor trypan blue
uptake were affected by heat shock. Moreover, flow
cytometry did not reveal differences in monocyte mor-
phology (as determined by forward and sideward scatter)
and cell detritus formation.

Several studies demonstrate that other LPS-mediated
effects are affected by hyperthermia. Heat shock treatment
markedly reduced the LPS-induced increase in TNF-α in
rats [17]. In mice, the LPS-induced increase in vascular
permeability was inhibited by heat shock via a hsp90
dependent mechanism [18]. Furthermore, heat shock
inhibited the LPS-induced IL-18 expression in murine
macrophages [28]. Similar to our findings, heat shock
reduced tissue factor activity and mRNA in human
endothelial umbilical cells under in vitro conditions[29].
In addition, Egorina et al. 2006 demonstrated that
rewarming of monocytes after hypothermia induces tissue
factor expression, which, in turn, can be inhibited by heat
shock treatment [30].

Conclusion
In our study we were able to show that heat shock inhibits
LPS-induced tissue factor activity in whole blood. We
hypothesize that hyperthermia can reduce intravascular
tissue factor formation during gram-negative sepsis. Stud-
ies to investigate the effect of fever on disseminated intra-
vascular coagulation in patients with sepsis are warranted.
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