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Emphasis on the Role of PF4 in the Incidence,
Pathophysiology and Treatment of Heparin
Induced Thrombocytopenia
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Abstract

Heparin Induced Thrombocytopenia (HIT) is caused by antibodies that recognize platelet factor 4 (PF4) associated
with polyanionic glycosaminoglycan drugs or displayed on vascular cell membranes. These antibodies are elicited
by multimolecular complexes that can occur when heparin is administered in clinical settings associated with
abundant PF4. Heparin binding alters native PF4 and elicits immune recognition and response. While the presence
of heparin is integral to immunogenesis, the HIT antibody binding site is within PF4. Thus HIT antibodies develop
and function to cause thrombocytopenia and/or thrombosis only in the presence of PF4. Future emphasis on
understanding the biology, turnover and regulation of PF4 may lead to insights into the prevention and treatment
of HIT.
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Introduction
With the introduction of heparin into clinical practice in
the 1940s, surgeons were able to perform complex opera-
tions using this anticoagulant to prevent and/or treat
obstructive clots. The availability, over-all safety and per-
formance of heparin opened the door for procedures such
as hemodialysis, open-heart surgery and organ transplants
[1]. Today, heparins are used for prophylaxis and treatment
of an expanding list of medical conditions and surgical and
interventional procedures [2]. An estimated 12 million
patients receive some form of heparin each year in the
United States [3].
In the decades following its introduction however, a

paradoxical, adverse effect of heparin was recognized [4]. In
a small percentage of patients, there was an unexplained
drop in platelet count after several days of heparin therapy.
Typically, low platelet count in the face of anticoagulation
poses the risk of a bleeding complication. Instead patients
with this “heparin-induced thrombocytopenia” (HIT) were
at risk for venous and arterial thrombosis [5]. HIT
* Correspondence: jwaleng@lumc.edu
Departments of Pathology and Thoracic & Cardiovascular Surgery, Loyola
University Medical Center, Bldg 110, Rm 5225, 2160 S. First Avenue,
Maywood, IL 60153, USA

© 2013 Prechel and Walenga; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
thrombosis (HITT) necessitates the withdrawal of heparin
which would exacerbate rather than resolve this unusual
clotting condition. In the absence of an effective alternative
therapy, HITT can progress to thromboembolic complica-
tions including deep vein thrombosis, pulmonary embol-
ism, myocardial infarction and stroke [6]. Depending on
the patient population, HIT occurs in 0.5-5% of patients
receiving heparin for 5 or more days. Of patients with HIT,
30-72% develop thrombotic complications with 10% risk of
limb amputation and 20-30% risk of death [7]. The diffi-
culty of management and the devastating consequences of
the HIT(T) syndrome have encouraged an abundance of
research into HIT pathogenesis, with the goal of minimi-
zing the risk for developing HIT(T) and discovering safe
and effective alternative anticoagulant drugs [8].
Early investigators determined that the agent responsible

for HIT was a platelet-activating antibody that caused plate-
let consumption and a hypercoagulable state [9]. Initial
suspicion of an immune involvement in HIT, based on the
5–15 day interval between heparin exposure and onset of
symptoms, was confirmed by demonstrating that HIT
patient sera or its IgG fraction caused activation of donor
platelets in the presence of heparin in vitro [10,11]. How-
ever the “heparin antibody” could not be isolated [12]. After
a decade, investigators discovered that the HIT antigen was
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not heparin itself, but rather a specific complex of heparin
with an endogenous platelet protein, platelet factor 4 (PF4)
[13-15]. Much research has been devoted to evaluating the
specifics of titer, isotype and avidity of PF4/heparin anti-
bodies [16-19] and the characteristics, duration or dosage
of heparin-like drug [20-23] that are most closely related to
HIT pathology. Far fewer reports deal with the role of PF4
in the risk of immunogenesis (development) and pathogen-
esis (function) of HIT antibodies. This review emphasizes
the central role that the availability of the PF4 antigen plays
in HIT.

Platelet Factor 4
Platelet factor 4 (PF4), also known as chemokine CXCL4,
is a cationic, 7.8 kDa protein which forms tetramers at
physiological pH and ionic strength [24-26]. PF4 is
released from the alpha-granules of activated platelets as a
complex with a chondroitin sulfate proteoglyan carrier
[27,28]. It disappears rapidly from plasma as it transfers to
higher affinity heparan sulfate [29-31] on endothelial cells
[32,33], inhibiting local antithrombin (AT) activity and
thus promoting coagulation [34]. In addition to its role in
hemostasis, PF4 has many other biological effects, which
may also depend on its association with extracellular
glycosaminoglycans (GAGs); these have been reviewed
elsewhere [34-36].

Role of PF4 in HIT immunogenesis (antibody
development)
In addition to the presence of heparin during anticoagulant
therapy the formation of immunogenic complexes that
provoke antibody depends on the availability of PF4 [37].
The plasma level of PF4 is proportional to the extent
and duration of platelet activation and of PF4 turn-
over, depending to a large extent on the underlying
clinical status of each patient [38]. Increased PF4
levels are observed in inflammatory or infectious disease
[39,40], diabetes [41], cardiovascular and renal disease
[42-44], atherosclerosis [45] and other conditions affecting
vascular health [41,46-48] or in response to traumatic
medical procedures [49-51] or cardiopulmonary bypass
[52]. Upon release from activated platelets, PF4 rapidly as-
sociates with heparan sulfate on endothelial cells and can
be brought back into circulation by heparin, for which it
has a higher affinity [30,31,53]. This heparin-releasable
PF4 pool (HR-PF4) can be evaluated by measuring
plasma PF4 before and after injection of heparin; subse-
quent heparin doses release less PF4 for an interval related
to the rate that PF4 accumulates on the endothelium
[54,55]. HR-PF4 is another measure of PF4 availability.
Compared to healthy control subjects, a higher level and
rate of re-establishment of the extracellular PF4 has been
demonstrated in several patient populations, including
those with diabetes [56,57], atherosclerosis [58] renal, [44]
cardiovascular or coronary artery disease [59-61]. Under-
lying disease, especially when associated with platelet acti-
vation, impacts the availability of PF4 and the likelihood of
formation of multimolecular PF4/heparin complexes.
The availability of PF4 is influenced both by acute and

chronic platelet activation, and logically plays a role in the
risk for generation of PF4/heparin antibodies in the con-
text of anticoagulant therapy. This suggests an explanation
for the common observation that specific patient popula-
tions are known to be at an increased risk of developing
HIT antibodies [51,62-64]. Thus it is important to re-
cognize that in addition to the type, dose and duration of
heparin therapy, there are patient related variables
that are important in assessing the risk for generation
of HIT antibodies [8,65,66].

Role of PF4 in HIT pathogenesis (antibody function)
It is well documented in the literature that the presence of
HIT antibody does not cause thrombocytopenia or throm-
bosis in the majority of seropositive patients [62,67-69]. It
is when certain HIT antibodies bind their PF4 antigen,
forming immune complexes, that subsequent Fc-gamma
receptor-mediated platelet activation ensues and can lead
to thrombocytopenia and/or thrombosis. Thus the HIT
syndrome depends not only on the presence of HIT anti-
bodies of sufficient titer and specificity but also on the
presence of the antigenic PF4 target [37]. Many of the
conditions that increase the risk of antibody formation by
causing platelet activation and release of PF4 (as described
above) similarly increase the risk of clinical consequences
due to HIT antibody immune complex-mediated platelet
activation [51,70].
In contrast to immunogenesis (formation of anti-

bodies), which is dependent on the presence of heparin,
HIT pathogenesis (antibody function) can occur after
cessation of anticoagulant therapy, referred to as “de-
layed HIT” [71-76]. Studies have demonstrated that PF4
bound to glycosaminoglycans on the surface of endothe-
lial cells, monocytes and platelets can present the HIT
antibody target antigen [65,77-80]. Thus the HIT anti-
genic target may be available in the absence of heparin,
when PF4 from activated platelets associates with GAGs
on vascular cells [79]. There is no evidence to suggest
that extracellular GAG-associated PF4 initiates antibody
formation; however, HIT antibodies resulting from
heparin exposure may bind to these sites and form HIT
antigen-antibody immune complexes. Indeed, HIT
related thrombotic complications often occur at sites of
vascular damage from catheter placement or at surgical
sites [81-86], where PF4 can accumulate at high levels
[29]. Many situations, both during and subsequent to
hospitalization, may impact the level of platelet activa-
tion and lead to an increase in GAG-associated PF4, and
potential HIT target antigen. Chronic health conditions
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such as atherosclerosis, diabetes or hypercholesterolemia
[41,48,75], as well as spontaneous/isolated instances of
infection or injury, for example, could change the likeli-
hood of HIT occurring in seropositive patients by
increasing platelet activation and the availability of PF4
target antigen [87]. Currently scoring systems, based on
evaluation of clinical presentation [88-90], along with
laboratory measurements of the titer, isotype and
in vitro functionality of PF4/heparin antibodies are the
basis of assessing the likelihood of clinical HIT [16,17].
Patient-related factors, including status of platelet activa-
tion and PF4 turnover certainly play a role in HIT risk.
Further research will be needed to understand how to
evaluate these factors to improve risk prediction.

PF4/Heparin complexes
The development and functionality of HIT antibodies
are dependent not only on availability of PF4, but more
importantly on the level of PF4 in relation to heparin
(or other GAG) [63,91]. The binding of the cationic
PF4 tetramer and heparin, or other polymeric anion,
occurs by relatively non-specific electrostatic interactions
[20,92-94], and the size and characteristics of the resulting
complexes are governed by the concentration of each [63].
Numerous in vitro studies have been conducted using anti-
bodies isolated from HIT patients to define the characteris-
tics of PF4/heparin complexes that are most antigenic
(cross-reactive). These studies indicate that complexes
formed at near equimolar ratios of PF4 and heparin, correl-
ate with optimal antibody binding. With higher proportions
of heparin, complexes are smaller and do not bind to form
platelet activating HIT antibody immune complexes
[63,95-98]. Platelet factor 4 to heparin ratios (PHRs) in the
range of 3:1 to 0.7:1 result in ultralarge complexes (ULCs)
[91,97] with net neutral surface charge [63] and arrays of
closely approximated PF4 tetramers [99]. It is believed that
these unique, near equimolar PHR complexes cause con-
formational changes within and/or among PF4 tetramers
[99-101], that expose neoepitopes which represent the HIT
antibody binding site.
Experimental and clinical studies find a distinction

between antigenicity and immunogenicity, that is, between
antibody binding or cross-reactivity, and antibody forma-
tion or seroconversion. Experiments employing a mouse
model to investigate HIT immunogenesis have dem-
onstrated that mouse PF4 (mPF4)/heparin complexes,
but not mPF4 alone cause development of mPF4/heparin-
reactive antibodies. The higher the concentration of mPF4/
heparin complexes the greater was the antibody formation
[96]. A somewhat surprising study showed that while the
equimolar, charge neutral mPF4/heparin ratios resulted in
the largest and most antigenic complexes, smaller, high
PHR complexes (i.e., PF4>>heparin) with net positive
surface charge caused greater mPF4/heparin antibody
formation [63]. Various clinical studies conclude that the
risk of HIT seroconversion is far less with low molecular
weight heparins (LMWHs) compared to unfractionated
heparin, yet in in vitro assays, LMWHs cross-react with
HIT-antibodies to cause maximal platelet activation
[102-104]. Cases of HIT antibody seroconversion have
been reported in patients treated with the pentasaccharide,
fondaparinux [105]. Surprisingly, the fondaparinux-elicited
antibodies cross-react with heparin and LMHWs, but not
fondaparinux, in vitro [106,107]. Thus PF4/heparin com-
plexes that bind the most HIT antibodies might not
be identical to those which provoke de novo antibody
generation [108].
It is also interesting to consider that anticoagulant ratios

of PF4 and heparin differ from those of antigenic or
immunogenic complexes. Only heparin in excess of PF4
has anticoagulant effect [109]. Heparin is neutralized by
PF4 present in vitro in PHRs down to as low as
0.42:1 (i.e., PF4<heparin). Heparin would be neutralized by
PF4/heparin complexes in the equimolar range associated
with maximal HIT antibody binding [110-112]. It is difficult
to attribute the process of immunization to the PF4/heparin
ratios that would be present during effective anti-
coagulation. On the contrary, the possibility that higher
PHRs may be more immunogenic would explain why
minimal heparin exposure, such as heparin flushes
[113,114], and lower relative dosage, such as prophylactic
vs therapeutic heparin [64,91] are often highly immuno-
genic. While much has been learned about the physio-
chemical characteristics of PF4/heparin complexes in which
HIT antibody binding sites are exposed, the nature of the
in vivo immunogen is less well understood.

PF4 and innate immunity
With the discovery that a specific PF4/heparin complex
was the HIT antigen [13,115] it seemed that the “foreign-
ness” of the heparin-bound PF4 conformation elicited the
immune response and the generation of antibodies. Yet
studies using antibodies isolated from HIT patients soon
demonstrated that PF4 bound to other glycosaminoglycan
drugs could also be targeted by PF4/heparin antibodies
[116]. These antibodies also bind to PF4 on endothelial
cells [13], monocytes [77] or platelets [78,117], or to PF4
immobilized on anionic surfaces [94]. While the conform-
ational neoepitope can be exposed by other PF4 binding
partners, none are as immunogenic as unfractionated
heparin. That is, they were far less likely to elicit de novo
antibody formation, suggesting that the impetus for the
HIT immune response may be more complex than the
presence of a conformational change in a self-protein.
The HIT immune response has several unique aspects,

and is as yet, not completely understood [118]. Adaptive,
or acquired, immune responses are characterized by
antigen-specific antibodies of the IgG isotype, and by
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immune memory for efficient response to subsequent
antigen exposure. Acquired responses are relatively slow
to occur, as antibody producing B-cells work with T-cells
which recognize specifically presented epitopes of the
target. A more immediate, less specific B-cell response
occurs in response to generic classes of pathogenic
organisms and is independent of past exposure. This
rapid innate response is characterized by a less specific,
more transient population of IgM antibodies [119]. The
HIT immune response is unique. It is characterized by
PF4/GAG specific antibodies that occur after only several
days of heparin exposure. Despite the rapid appearance,
HIT antibodies are often of the IgG isotype. Yet, HIT anti-
body titers decrease rapidly and there is no memory B-cell
response. HIT immunogenesis is not typical of either the
innate or the adaptive response, but shares characteristics
of each [120,121].
In addition to their role in hemostasis, platelets are

increasingly recognized as immune effector cells [122,123].
PF4 is a member of a highly conserved family of host
defense effector polypeptides, kinocidins, which display
both antimicrobial and leukocyte chemotactic activity
[124,125] and play a role in the actions of both the innate
and adaptive immune systems [126]. PF4 and other
kinocidins contain a signature cationic, amphipathic motif
that interacts with and disrupts charged lipid membranes.
In its antimicrobial role, PF4 binds to specific species
of bacteria, fungus [124,125] and parasites [127,128]
facilitating immune defense responses [125,129].
This innate immune role of PF4 may help explain the

unusual immune response to PF4 in the presence of
heparin. In its antimicrobial role, PF4 binds to anionic
components of bacterial surfaces. It has been discovered
that PF4 bound to bacteria can be used to affinity enrich
HIT antibodies from patient sera, thus demonstrating
that antibodies generated in response to heparin therapy
cross react with PF4 epitopes exposed on bacterial cells
[120]. There is also accumulating evidence that the
converse is true, that antibodies occurring naturally in
response to microbial infections recognize PF4/heparin
complexes. PF4/heparin-reactive IgG and IgM antibodies
have been detected in up to 6% of the normal population
[120,130,131]. Otherwise healthy individuals with a bac-
terial periodontal infection, but not exposed to heparin,
have measurable PF4/heparin-cross reactive antibodies
in proportion to the severity of their disease [132]. And
“spontaneous HIT” has been described in patients who
developed clinical symptoms and HIT-reactive anti-
bodies without history of heparin exposure, especially in
cases of recent bacterial infection [133]. Thus an
immune response to endogenous, PF4-bound microbial
targets could explain the occurrence of PF4/heparin
cross-reactive antibodies in heparin naïve patients or the
common observations that seriously ill or septic patients
are at greater risk of developing HIT in the presence of
heparin [134-136]. These studies suggest a similarity
between PF4 bound to microbes and PF4 bound to
heparin or to vascular cells.
A direct test of the concept that endogenous PF4-bound

target antigens resemble the antigen generated by heparin
during anticoagulant therapy used a mouse model of
polymicrobial bacteria sepsis, and demonstrated that
bacterial exposure resulted in development of PF4/
heparin-reactive antibodies with a time course of a
typical primary immune response [120]. These studies
support the concept that HIT antibodies may resemble
naturally occurring antibodies elicited by PF4 functioning
as an antimicrobial agent [120,137]. This provides a context
to understand how anticoagulant therapy may provoke
antibody formation, as the presence of PF4 in complexes
with heparin or expressed on the surface of vascular cells
may mimic the presentation of PF4 bound to a pathogen,
triggering a protective, innate immune response.

Heparin as an immune adjuvant
Naturally occurring soluble proteins are poorly immuno-
genic in the absence of an adjuvant such as alum or various
oil emulsions, which have been used empirically as
immunostimulatory agents [138]. Adjuvants organize sur-
face antigenic epitopes; proteins expressed in a repetitive
and ordered fashion are much more immunogenic than in
soluble form, and may directly crosslink B-cell receptors
(BCRs) [139]. Heparin displays PF4 in closely spaced, repeti-
tive, ridge-like arrays creating polymeric repeating epitopes
[99]. In this regards, heparin may serve as an adjuvant that
results in an innate-immune response to PF4.
Cells of the immune system express a variety of pattern

recognition receptors (PRRs), including toll-like receptors
(TLRs). These receptors respond to pathogen associated
molecular patterns (PAMPs) that are characteristic of
pathogen groups, but distinct from “self”, allowing a
limited number of receptors to recognize a great variety of
pathogens [140]. Pattern recognition receptors are “threat
detectors” that initiate signals to other immune cells
[141]. It is becoming clear that commonly used adjuvants
activate PRRs and that innate immune responses are cen-
tral to their effectiveness [142,143]. Indeed, recently there
is a focus on discovering novel ligands of PRRs for use as
adjuvants to increase efficiency of vaccine development
[138]. It is possible that specific PF4/heparin complexes
display the antimicrobial conformation of PF4 as a patho-
genic molecular pattern and activate these receptors. Hep-
arin also increases the immunogenicity of cationic binding
partners, such as IL-8, neutrophil activating peptide-2 and
protamine sulfate [144-146]. Mouse immunization experi-
ments have demonstrated that heparin increases immuno-
genicity of the cationic proteins, protamine and lysozyme,
and that the immune responses resemble PF4/heparin
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seroconversion [145]. Thus, one hypothesis is that
heparin functions as an adjuvant, by creating peptide
motifs that act as agonists for innate immune pattern
recognition receptors.
TLR activation is central to both innate and adaptive

immune responses. Specific TLRs respond to particular
pathogen classes, generating a context-specific, unique
profile of cytokine signals which modulate the magni-
tude and fine structure of the B cell antibody response
[142]. In this way, innate immune recognition of PAMPs
provides information on the nature of a pathogen in
order to activate and orchestrate the most effective
adaptive effector response [138]. Prolonged receptor
engagement is required for lymphocytes and dendritic cell
differentiation and proliferation to result in plasma cells
with high affinity IgG and memory B cells [142]. In con-
trast, to quickly neutralize replicating pathogens, a more
rapid response can be evoked by TLR agonist-mediated
activation of dendritic cells and specific B cell subsets to
produce IgM as well as class-switched IgG and IgA
through a T cell-independent pathway [119,147]. Co-
stimulation of TLRs and BCRs can initiate rapid anti-
microbial antibody responses to contain pathogen loads
until the T-cell dependent antibody responses peak [142].
The balance between the innate and adaptive immune
response could depend on the concentration and duration
of antigen exposure. In the case of HIT, a persistent high
level of the PF4 target antigen might support an adaptive
immune response, whereas a more transient exposure
might result in only T-cell independent antibody produc-
tion with the absence of an immune memory response.
There is evidence of both types of immune response in
HIT [120]. The hypothesis that complexes of PF4 with
heparin resemble a conserved pathogenic molecular
pattern closely enough to activate TLRs may help explain
aspects of the immunogenesis of HIT.

Prevention/treatment strategies
To date, strategies to prevent or treat HIT have focused
on minimizing the use of unfractionated heparin in favor
of LMWHs or direct thrombin inhibitors [148]. These
alternative anticoagulants have important drawbacks;
they are more expensive and complex to manage than
heparin and pose risk of bleeding complicated by the
absence of effective reversal agents [8]. Focusing on
the central role of PF4 in the pathogenesis of HIT
allows us to appreciate novel approaches to prevent
or treat this syndrome.
As discussed above, HIT antibodies are necessary but

not sufficient to cause the intense platelet activation that
leads to thrombocytopenia and/or thrombosis. Formation
of platelet-activating immune complexes depends on
availability of the PF4 target antigen, and the risk of HIT
is therefore highest in settings characterized by intense
PF4 release. It is logical that minimizing the availability of
PF4 or otherwise preventing formation of PF4/heparin
complexes would be strategies to abrogate the risk of
immunogenesis and pathogenesis of HIT antibodies [149].
One such strategy was suggested by observation of

patients with familial hypercholesterolemia. These patients
do not achieve adequate low-density lipoprotein (LDL)
cholesterol reduction through diet or statin therapy and
may undergo frequent LDL apheresis treatments. Despite
the repeated exposure to heparin and predisposition to vas-
cular disease, the incidence of HIT is low in this population
[150]. Based on this observation, investigators studied the
level of PF4 in plasma and on the surface of platelets before
and after apheresis. Both plasma and surface PF4 were
significantly reduced by the procedure. This may explain
the lack of immunogenesis in spite of frequent heparin
exposure in these patients. In addition this could prove to
be a therapeutic strategy to reduce antigen availability in
seropositive patients at high risk for HIT [150].
Presentation of the PF4 target antigen results from the

physiochemical properties of complexes of heparin and
PF4 tetramers formed and sustained at specific molar
ratios [97]. In these highly ordered complexes heparin
binding allows close approximation of specific amino
acids on PF4 tetramers that create the antigenic epitope
[99]. Two recent studies demonstrate that disrupting the
tetrameric organization of PF4 by amino acid substitu-
tions [151] or by small inhibitor molecules targeted to
the dimer-dimer interface [152] prevents formation of
ULCs. Complexes of variant PF4 and heparin were
poorly recognized by HIT antibodies [151], and PF4
antagonist molecules inhibited HIT antibody-mediated
platelet activation [152]. These studies demonstrate that
strategies to alter or diminish the PF4 target antigen
may lead to novel therapeutic approaches for treatment
of HIT [149,153].
In general, antigenic epitopes are exposed when PF4

binds to any heparin-derived anticoagulant drug. In
addition to its anticoagulant activity heparin has potent
anti-inflammatory properties; however, the risk of bleed-
ing prevents its use for non-thrombotic indications.
Heparin which is desulfated at the 2-O and 3-O posi-
tions (ODSH) retains anti-inflammatory properties but
has reduced anticoagulant activity [154]. ODSH retains
the ability to bind and form complexes with PF4, how-
ever, it does not cause platelet activation in the presence
of HIT antibodies, suggesting that it does not expose
antigenic PF4 target [155]. ODSH can compete with
immobilized heparin for PF4 binding and can displace
PF4 from cell surfaces [156,157]. When combined with
heparin, ODSH reduces immunogenicity in vivo [157]
and ameliorates HIT antibody mediated platelet activa-
tion in vitro [155,156]. When used together, the capacity
of ODSH to sequester a proportion of available PF4
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without generating immunogenic complexes may be an
effective way to shift the PF4/heparin ratio toward less
antigenic complexes. In addition, the availability of less PF4
to block AT binding and cause heparin neutralization could
potentially increase anticoagulant potency [158]. Thus the
anti-inflammatory, non-anticoagulant properties of ODSH
may be useful for increasing the safety and effectiveness of
other anticoagulants [159]. It is a particular advantage that
ODSH has already undergone trials demonstrating that it
can be safely administered to humans [160].

Conclusions
A determining factor in the risk that HIT antibodies will
be elicited as a result of heparin anticoagulant therapy is
the presence of PF4. The presence of PF4 also determines
whether HIT antibodies will lead to thrombocytopenia
and/or thrombosis because only immune complexes of
antibody plus target antigen, not antibodies alone, mediate
the pathogenic platelet activation. This review presents
the hypothesis that heparin serves as an adjuvant, which
facilitates antibody formation by displaying PF4 in a motif
recognized as a pathogen associated molecular pattern, an
agonist for pattern recognition receptors on immune cells.
Techniques aimed toward sequestering PF4 or minimizing
its conformational alteration are promising areas of re-
search toward developing effective clinical interventions
to prevent or treat HIT.
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