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Abstract

Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation
(i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the
coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can
markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of
plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new “protein wave of
hemostasis” that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves
of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel
occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly
reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding
complications are still major concerns that continue to motivate innovation and drive therapeutic advances.
Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development
of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors
glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous
efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis.
This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will
focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
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Background
Platelet adhesion, activation and aggregation are critical
events in hemostasis and thrombosis [1–3]. Platelet ad-
hesion molecules, αIIbβ3 integrin and the glycoprotein
(GP) Ib-IX-V, are essential for these processes [4–6].
Other adhesion molecules, such as P-selectin, GPVI and
cadherins, are also involved [7–10]. The important roles
of adhesion molecules in normal hemostasis have been
well demonstrated in bleeding disorders, for example,
Glanzmann thrombasthenia (β3 integrin deficiency) [11]
and Bernard-Soulier syndrome (GPIb-IX-V complex de-
ficiency) [12]. However, under pathological conditions,
excessive platelet function may lead to thrombotic dis-
eases, such as myocardial infarction and ischemic stroke,
which cause far more deaths each year than cancer or
respiratory diseases [1, 2, 13–15]. Therefore, antiplatelet
agents are vital for the treatment of thrombosis [16]. For
over a decade, dual antiplatelet therapy with clopidogrel
and aspirin has been considered a key treatment of
patients with acute coronary syndrome [17, 18]. None-
theless, some patients undergoing this combination ther-
apy continue to suffer from recurrent thrombotic events,
likely a result of platelet activation and aggregation
occurring independently of ADP or thromboxane A2
receptor-mediated signalling pathways [17]. Thus, at-
tenuating platelet adhesion appears to be a desirable
strategy in effectively controlling pathological throm-
bosis [18]. Further understanding of the interactions be-
tween platelet adhesion molecules and their binding
partners is therefore crucial in developing novel anti-
thrombotic therapies. This review briefly summarizes
the current knowledge of thrombosis and antiplatelet
therapies, introduces a number of major platelet adhe-
sion molecules, and highlights some recent advances in
the new mechanisms of thrombosis, and anti-thrombotic
therapies that are in clinical trials (unless otherwise indi-
cated). There are several excellent available reviews re-
garding antiplatelet therapies, such as ADP antagonists
(e.g. P2Y12 inhibitors), thromboxane antagonists and
PAR-1/4 inhibitors [17, 18]. This mini-review will mainly
focus on the therapeutic developments targeting platelet
adhesion molecules.

Review
Arterial thrombosis and current state of antiplatelet
therapies
Arterial thrombosis at the site of atherosclerotic plaque
rupture may lead to uncontrolled vessel occlusion, result-
ing in life-threatening consequences (e.g. unstable angina,
myocardial infarction and ischemic stroke) [1, 2, 13]. Dur-
ing plaque rupture, subendothelial matrix proteins, like
collagen, von Willebrand factor (VWF), fibrinogen, fibro-
nectin and laminin are exposed to circulation, leading to
the rapid response of platelets [6]. Inappropriate platelet

adhesion, activation and aggregation promote excessive
platelet plug formation. Activated platelets can also pro-
vide negatively-charged surfaces that harbor coagulation
factors and markedly potentiate cell-based thrombin gen-
eration and blood coagulation [1, 2, 19, 20]. The evolving
concept of the “protein wave of hemostasis” indicates a
potential role of platelet-released plasma fibronectin in
thrombosis and hemostasis [21, 22]. Thus, platelets are
key mediators of atherothrombosis, which are actively
involved in all three waves of thrombus formation:
protein wave, platelet accumulation, and blood coagu-
lation [21, 23].
Current FDA-approved antiplatelet therapies (Fig. 1)

mainly aim to (i) inhibit thromboxane A2 synthesis,
which inhibits platelet activation (e.g. aspirin and triflu-
sal); (ii) antagonize the function of platelet P2Y12 recep-
tors, (e.g. clopidogrel, prasugrel, and ticagrelor); (iii)
inhibit platelet integrin αIIbβ3 activity, which inhibits
platelet aggregation, (e.g. abciximab, eptifibatide, and tir-
ofiban); (iv) inhibit phosphodiesterase, which increases
platelet cAMP/cGMP levels (e.g. dipyridamole and cilos-
tazol) [24]. These antiplatelet drugs have significantly
reduced cardiovascular deaths. However, limitations of
current therapies, such as weak/poor inhibition of plate-
let function, excessive bleeding, thrombocytopenia and
unexpected platelet activation are concerns that drive
therapeutic advances [18, 25, 26]. In 2014, the FDA ap-
proved Vorapaxar, a novel antagonist of the thrombin
receptor protease-activated receptor 1 (PAR1), which re-
duces the risk of heart attack and stroke in patients with
atherosclerosis or peripheral arterial disease [27, 28].
However, Vorapaxar must not be used in patients who
have histories of stroke, transient ischemic attack (TIA)
or intracranial hemorrhage, since it increases the risk of
intracranial bleeding [28, 29].

Platelet adhesion molecules in hemostasis and
thrombosis: novel mechanisms and therapeutic
opportunities
Platelet adhesion molecules are proteins/receptors on
the platelet surface that interact with other cells or the
extracellular matrix, including the integrin family (e.g.
α2β1, α5β1, α6β1, αLβ2, αIIbβ3, and ανβ3) [4, 30, 31],
the immunoglobulin superfamily (e.g. GPVI, FcγRIIA,
ICAM-2, PECAM-1, JAMs and Cadherin 6), the leucine-
rich repeat family (LRR; e.g. GPIb-IX-V complex), and
the C-type lectin receptor family (e.g. P-selectin and
CLEC-2), etc. [32–34]. Recent evidence has shown that
platelet adhesion molecules play key roles in a variety of
pathophysiological processes [23], such as hemostasis
and thrombosis [4, 33], immune responses [35, 36], in-
flammation [35–37], atherosclerosis [38–40], lymphatic
vessel development [41–44], angiogenesis [45–47], mis-
carriage [48, 49], and tumor metastasis [50–52]. Platelets
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are versatile cells and the mechanisms of their diverse
functions have emerged as hot research topics [23]. This
review mainly focuses on their roles in thrombosis and
as novel anti-thrombotic targets (Fig. 1).

The GPIb-IX-V complex: emerging targets of antiplatelet
therapy
New insights into the GPIb-IX-V complex Platelet
GPIb-IX-V complex (LRR family protein) has approxi-
mately 50,000 copies/platelet. It is composed of one
GPIbα subunit disulfide-linked to two molecules of

GPIbβ, and non-covalently linked with GPIX and GPV
in a 2:4:2:1 ratio [53]. GPIb-IX-V is a key platelet recep-
tor in initiating platelet translocation and adhesion to
the vessel wall during vascular injury, especially under high
shear stress (e.g. in small or stenosed arteries) [54, 55].
Platelet translocation onto the subendothelium is mediated
by the binding of GPIbα to the immobilized VWF, a multi-
meric adhesive protein secreted from activated endothelial
cells and platelets. The crystal structure of the GPIbα N-
terminal ligand-binding domain and the VWF A1 domain
gives useful information regarding their interaction [56].

Fig. 1 Current and novel antiplatlet therapies. Platelet adhesion to an injury site at a vessel wall is mediated by the exposure and binding of
subendothelial matrix proteins (e.g. collagen, VWF, fibrinogen, and fibronectin) to glycoprotein (GP) receptors on the platelet surface. VWF
binding to the GPIb-IX-V complex, collagen binding to platelet GPVI and integrin α2β1 receptors trigger a signal transduction process resulting in
the local release of platelet activation agonists, such as thromboxane A2 and ADP. These agonists along with thrombin produced from coagula-
tion cascades and activated platelets, bind to platelet surface bound G-coupled receptors inducing further platelet activation. Activation of platelet
integrin αIIbβ3 induces platelet aggregation mediated by fibrinogen/VWF or the yet undetermined “X” ligands. Leukocyte-platelet adhesion can
be driven by the interaction between platelet surface P-selectin and its counter-receptor PSGL-1 situated upon the leukocyte surface. Inhibition of
platelet activation is mainly mediated by the PDE/PDE3 regulated degradation and PGI2, NO and GLP-1R regulated activation of cGMP or cAMP.
Direct and indirect antithrombotic therapeutics are tabulated in the light colored boxes within the figure. The actions of antithrombotic therapies
are depicted using red arrows, and some indirect antithrombotic agents (such as anti-atherosclerotic agents) are represented with purple arrows.
Therapeutics, to name a few, listed in black, green, red and purple correspond to FDA-approved, phase III, phase II or preclinical development
status, respectively. Numbered inhibitory arrows represent the actions of the correspondingly numbered therapies. Some other anti-platelet
agents are not included, more information can be found in references 17, 18 and other publications. Abbreviations: COX-1 cyclooxygenase 1 GLP-1
glucagon-like peptide 1, GLP-1R glucagon-like peptide 1 receptor, PAR protease-activated receptor, PDE phosphodiesterase, PSGL-1 P-selectin
glycoprotein ligand 1, TP thromboxane prostanoid receptor, TXA2 thromboxane A2; VWF von Willebrand factor
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This interaction induces intracellular signalling events that
can activate integrins, leading to platelet stable adhesion
and subsequent platelet aggregation. Interestingly,
platelet-derived VWF was recently shown not essential for
hemostasis and thrombosis, but instead fosters thrombo-
inflammatory diseases such as ischemic stroke in mice via
a GPIb-dependent mechanism [57]. This suggests that tar-
geting GPIbα-VWF may be a promising anti-thrombotic
strategy, particularly in thrombo-inflammatory conditions.
Furthermore, GPIb-IX-V complex has a high affinity

for thrombin [58, 59]. Two thrombin binding sites on
GPIbα LRR C-terminal flank region have been revealed
[58]. Consequently, thrombin can activate platelets via
GPIbα in two ways [60]: accelerating the cleavage of
PAR-1 and platelet activation [61], or direct signaling
via GPIbα, particularly after cleaving GPV, which is
generally considered a “brake” in GPIb-IX-V activation
[62, 63]. It is currently unknown but it is reasonable
to consider that targeting both VWF and thrombin bind-
ing sites of GPIbα might provide additional benefits in
effectively controlling thrombosis.
GPIbα can also interact with multiple other ligands,

leading to platelet activation (e.g. thrombospondin [64]
and P-selectin), pro-coagulant activity (e.g. factors XI
[65], XII [66], VIIa [67] and kininogen [68]), inflammatory
responses (e.g. P-selectin [69, 70], αMβ2 [71]), arterial re-
modeling [72] and others. Recently, the antibody-
GPIbα interaction in immune thrombocytopenia has
been highlighted. Some anti-GPIbα antibodies cause
platelet activation and desialylation (removal of
sugars), followed by the clearance of desialylated
platelets via Ashwell-Morell receptors on hepatocytes
[73, 74].

Developing novel antiplatelet agents against GPIbα
Given the critical roles of GPIbα or GPIbα-VWF interac-
tions in platelet adhesion, particularly under stenosis
high-shear conditions, they are attractive targets in at-
tenuating thrombosis [54, 75, 76]. Currently, two such
agents are in active clinical trials. ALX-0081 (Caplacizu-
mab), an anti-VWF humanized single-variable-domain
immunoglobulin (Nanobody), binds to the A1 domains
of VWF with high affinity [77]. The phase I and II clin-
ical trials of ALX-0081 in patients with stable angina
undergoing percutaneous coronary intervention (PCI) or
high risk PCI patients have shown a promising antiplate-
let effects, and a relatively safe profile [77, 78]. The
phase III clinical trials will investigate its effects on ac-
quired thrombotic thrombocytopenic purpura (TTP)
[79–81]. ARC1779, an anti-VWF aptamer, was previ-
ously reported as an encouraging agent; however, the
clinical trial of ARC1779 was prematurely terminated
[82]. These VWF inhibitors may be useful candidates for
TTP treatment.

A direct anti-GPIbα drug, Anfibatide, is purified from
the snake venom of Agkistrodon acutus [83, 84]. Notably,
Anfibatide inhibits both VWF and α-thrombin binding
to GPIbα, representing a more potent anti-thrombotic
effect [85]. In experimental models, Anfibatide inhibited
platelet adhesion, aggregation and thrombus formation,
without increasing bleeding time [83]. The phase II
human clinical trials have also shown the promise of
Anfibatide being utilized as a novel antiplatelet agent in
cardiovascular diseases without significantly affecting
hemostasis in patients with non-ST segment elevation
myocardial infarction (unpublished data) [85]. Addition-
ally, anti-GPIbα antibody displayed a strong protective
effect in the mouse stroke models without inducing sig-
nificant intracranial bleeding [86–88]. Anfibatide has
also been shown as a candidate to treat ischemic stroke
in experimental models [89] (the same may hold true for
anti-VWF therapy) and deserves further investigation.
There are some other preclinical agents targeting GPIbα
that are under investigation, such as h6B4-Fab [90],
GPG-290 [91], and anti-GPIbα NIT family monoclonal
antibodies [92]. The generation of these novel antago-
nists is reaching the forefront of treatment against heart
attack and stroke, although the efficacy and safety of
these drugs remain to be further established or evaluated
in human clinical trials. Notably, there are currently no
clinically available direct GPIbα antagonists.

GPVI: a potential anti-thrombotic target
GPVI (immunoglobulin superfamily protein) is exclu-
sively expressed on platelets and megakaryocytes. It is
associated with the Fc receptor γ-chain, which contains
an immunoreceptor tyrosine-based activation motif
(ITAM). Cross-linking by ligands, such as collagen, leads
to ITAM-dependent signalling, and platelet activation. A
possible anti-thrombotic benefit of targeting PI3-kinase/
Akt pathway on ITAM receptors was suggested [93]. Fi-
brin has also been identified as a new GPVI ligand [94].
The GPVI ectodomain interacts with immobilized fibrin,
which amplifies thrombin generation, and promotes
thrombus stabilization [94, 95].
The role of platelet GPVI in the pathogenesis of ische-

mic stroke has been gradually acknowledged [96–98].
Notably, platelet adhesion/activation can enhance infarct
growth by promoting an inflammatory response [88, 99,
100]. GPVI-mediated platelet activation can lead to the
release of interleukin-1α that drives cerebrovascular in-
flammation [100]. GPVI may be thus a potential antiplate-
let target [97, 101, 102]. In animal models, anti-GPVI
protected against thrombosis, ischemia-reperfusion injury
[103] and stroke [104]. In phase I clinical trials, Revacept
(the humanized Fc fusion protein of the GPVI ectodo-
main), inhibited collagen-induced human platelet aggrega-
tion [105]. Phase II trials of Revacept in patients with
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carotid artery stenosis, TIA, or stroke are ongoing [106].
The efficacy and safety of Revacept in these patients will
be further determined. Some other GPVI targeted agents
that are under preclinical development, such as Losartan
[107] and scFv9012 [108], have been shown to inhibit the
binding of GPVI to collagen.

Platelet integrin receptors
Integrins are heterodimeric transmembrane receptors,
which are involved in cell-cell and cell-matrix interac-
tions [30]. There are six different integrins on platelet
surfaces: α2β1, α5β1, α6β1, αLβ2, αIIbβ3, and ανβ3.
Platelet integrin αIIbβ3 is the dominant integrin ex-
pressed on platelets. Given the critical roles of αIIbβ3
integrin in mediating platelet aggregation, αIIbβ3 antag-
onists have been widely used for nearly two decades.

Integrin αIIbβ3 as anti-thrombotic targets: lessons
and opportunities Approximately 17 % of total platelet
surface proteins are αIIbβ3 integrin, which contains both
αIIb and β3 subunits [4]. Platelet “outside-in” signals are
induced following platelet adhesion and platelet activa-
tion (e.g. GPIbα-VWF, GPVI/α2β1-collagen, P2Y12-ADP,
PARs-thrombin), resulting in an increased Ca2+ influx
and ultimately “inside-out” signaling. These “inside-out”
signals further drive the conformational changes of
αIIbβ3, from a low to high affinity state for binding to
its ligands (e.g. fibrinogen/fibrin, VWF, fibronectin,
thrombospondin, vitronectin and unidentified “X” li-
gands) [109–112].
Fibrinogen, a major prothrombotic ligand of αIIbβ3,

has been documented to be required for platelet aggre-
gation for over 50 years. However, platelet aggregation
still occurs in the absence of fibrinogen and VWF, al-
though in the absence of αIIbβ3, aggregation is abolished
[5, 8, 21, 113–116]. The discovery of “fibrinogen-inde-
pendent platelet aggregation” demonstrates that uniden-
tified αIIbβ3 ligands also mediate platelet aggregation
[5, 8, 21, 113, 116], and have the potential to be novel
anti-thrombotic targets. Interestingly, some ligands (e.g.
plasma fibronectin, vitronectin) may block prothrombo-
tic ligand (e.g. fibrinogen)-αIIbβ3 interactions and at-
tenuate thrombosis [21, 117].
Three FDA-approved αIIbβ3 antagonists are available:

Abciximab (ReoPro), Eptifibatide (Integrilin) and Tirofi-
ban (Aggrastat) [118–120]. Abciximab is a fragmented
antibody that binds close to the ligand binding-pocket
on αIIbβ3. Eptifibatide, isolated from snake venom,
binds via a KGD sequence and is a competitive inhibitor
for fibrinogen-αIIbβ3, whilst tirofiban is a small mol-
ecule RGD inhibitor. Currently, αIIbβ3 antagonists are
used in patients undergoing PCI and significantly de-
crease the incidence of myocardial infarction and death
[121]. However, these antagonists can induce further

conformational changes in the β3 subunit that may have
negative consequences, such as exposing previously
hidden epitopes, and causing platelet activation [122].
αIIbβ3 antagonists are also associated with intracranial
hemorrhage in patients with acute ischemic stroke [123].
Therefore, a safer and more specific on-target drug is re-
quired to provide better patient care. Recently, a novel
αIIbβ3 antagonist, RUC-4 (a more potent and more
soluble congener of RUC-2 that disrupts Mg2+ binding
to the metal ion-dependent adhesion site of αIIbβ3), is
suggested for prehospital therapy of myocardial infarc-
tion in animal models, without significantly priming the
receptor to bind fibrinogen [124]. However, the possibility
of increased bleeding with therapeutic doses of RUC-4
remains to be evaluated [124].
The plexin-semaphorin-integrin (PSI) domain, located

near the N-terminus of the β3 subunit, is highly con-
served across the integrin family in different species, and
contains seven cysteine residues which have been impli-
cated in regulating β2 integrin activation [125, 126]. Pre-
vious studies described a role for cysteine-derived thiol/
disulfide groups in the conformational switches of the
β3 integrin [127–130]. Disulfide bond remodeling is me-
diated primarily by thiol isomerase enzymatic activity,
which is derived from active CXXC thioredoxin motifs
and plays a role in the activation of αIIbβ3 [131]. Our
group has recently identified that integrin PSI domain
has endogenous thiol isomerase function and could be a
novel target for anti-thrombotic therapy (unpublished
data) [132]. We found that both CXXC motifs of β3 in-
tegrin PSI domain are required to maintain the optimal
enzyme function, since mutations to one or both of the
CXXC motifs decrease or abolish their protein disulphide
isomerase (PDI)-like activity. We developed anti-PSI
monoclonal antibodies and found that these antibodies
cross-reacted with β3 PSI domains of human and other
species and specifically inhibited the PDI-like activity, in-
tegrin activation and reduced PAC-1 binding to β3 integ-
rin. Importantly, anti-PSI abrogated murine and human
platelet aggregation in vitro and thrombus growth ex vivo
and in vivo in both small and large vessels without signifi-
cantly affecting bleeding time or platelet count. Thus,
integrin PSI domain contains endogenous PDI activity
and is a key regulator of integrin activation that can be a
new target for therapy.
Interestingly, targeting activated platelets αIIbβ3 has

been considered into the development of novel fibrino-
lytic drugs, which may allow effective thrombolysis and
thromboprophylaxis [14, 133]. For example, scFvSCE5 (a
single-chain urokinase plasminogen activator fused to a
small recombinant antibody that binds activated αIIbβ3)
directly targets thrombi and exerts an effective thromb-
olysis [133]. A chimeric platelet-targeted urokinase pro-
drug (composed of a single-chain version of the variable
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region of an anti-αIIbβ3 mAb and a thrombin-activatable,
low-molecular-weight pro-uPA) selectively targets new
thrombus formation [134].

Other platelet integrins: α2β1, α6β1 and α5β1 Other
integrin receptors may also be considered as novel anti-
thrombotic targets [16, 135]. Platelet α2β1 promotes
stable platelet adhesion to collagen and may be a viable
option, since overexpression of α2β1 in humans in-
creases atherothrombotic risk, but lower level of α2β1
does not enhance bleeding risk [16]. Experimental evi-
dence shows that α2β1 inhibitors (e.g. snake venom
EMS-16) reduced pathological thrombus formation in
vivo [136–138]. Platelet α6β1, the main receptor for
laminin, plays a role in platelet adhesion/activation and
arterial thrombosis, and may also be a new target [135].
Platelet α5β1, the major receptor for fibronectin, plays a
supplementary role in platelet adhesion [139], but evidence
is lacking regarding the anti-thrombotic benefits of antag-
onizing α5β1.

Other novel anti-thrombotic candidates: Glucagon-like
peptide 1 receptor, P-selectin, CD40/CD40L, and Toll-like
receptors
Strategies to target other platelet receptors beyond adhe-
sive proteins have also been developed, such as P2Y12,
PAR1, TP, 5HT2A antagonists [17, 140]. Interestingly,
some chronic diseases, such as diabetes mellitus and
atherosclerosis, are associated with arterial thrombosis
[23, 141]. Recently, our group identified that a functional
Glucagon-like peptide 1 receptor (GLP-1R) is expressed
on human megakaryocytes and platelets [142]. Import-
antly, GLP-1R agonists (e.g. Exenatide), likely through
increasing the intracellular cAMP levels, inhibit platelet
function and thrombus formation [142]. This study
provides important insights into why diabetic patients
who are receiving GLP-1-targeted therapies have a re-
duced number of cardiovascular events [142, 143]. In
addition, given the cross-talks between platelets and
immune systems, thrombosis also intensively commu-
nicates with the inflammatory pathway [23]. Some anti-
inflammatory/anti-atherosclerotic agents may therefore
also indirectly inhibit thrombosis, especially in deep
vein thrombosis [144]. For example, antagonists of P-
selectin/PSGL-1, such as rPSGL-Ig [145], PSI-697
[146], PSI-421 [147], inhibit platelet-mediated leukocyte
attachment and recruitment of procoagulant microparti-
cles, and may represent a safe therapeutic intervention in
accelerating thrombolysis [148]. Antagonists of CD40/
CD40L [149], such as CD40 antibody, reduce atheroscler-
otic burden in a murine model [150]. In addition, as the
important roles of Toll-like receptors in atherosclerosis
are gradually recognized [151, 152], they may also be
potential targets for the treatment of atherothrombosis.

Conclusions
Arterial thrombotic events, such as myocardial infarc-
tion and ischemic stroke, and venous thromboembolism,
are three leading causes of morbidity and mortality world-
wide [153]. Platelets play a central role in the pathogenesis
of atherothrombosis, and contribute profoundly to the
pathology of venous thrombosis [23]. Platelet adhesion
molecules, act as the contacts between platelets and other
cells or extracellular matrix proteins and, to a great extent,
may determine the reactivity of platelets and thus are
attractive anti-thrombotic targets (Fig. 1) [23]. Although
evidence-based antiplatelet therapy has markedly im-
proved patient care, on-treatment events and bleeding are
still major concerns [17, 148].
Optimization of the use of currently available therapies,

and improvements to the understanding of individual
differences in response to anti-platelet treatments are still
the most cost-effective treatment strategies [17, 148].
Additionally, improved understanding of the mechanisms
of platelet accumulation has been critical for further
developing novel antiplatelet therapies, such as the PAR1
antagonist Vorapaxar (recently approved by the FDA),
GPIbα/VWF antagonists (e.g. ALX-0081 and Anfibatide;
undergoing clinical trials), and GPVI antagonist (e.g. Reva-
cept; undergoing clinical trials) (See section II. A-C).
Another cost-effective strategy may be to repurpose
already-established drugs by discovering novel mecha-
nisms of action in anti-thrombotic diseases, such as the
recently-identified GLP-1R agonist, Exenatide, an anti-
diabetic drug that has potential anti-thrombotic effects
[142, 154]. Future studies in the areas of atherothrombo-
sis, inflammation, metabolic syndrome, diabetes, lipid
metabolism and cancer-related thrombotic diseases in the
next few years should advance our knowledge and the
application of these and other new anti-platelet agents. Of
note, clinical trials provide important evidence regarding
the safety and efficacy of the treatments. However, difficul-
ties such as narrow eligibility criteria, low enrollment of
patients and the necessity to test the new drugs on top of
the current dual antiplatelet therapy (e.g. aspirin and
clopidogrel), may add complexity to the development of
new drugs and also deserve our attention.
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