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Long noncoding RNA TUG1 induces 
angiogenesis of endothelial progenitor cells 
and dissolution of deep vein thrombosis
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Abstract 

Objective: Long non-coding RNA (lncRNA) essentially controls many physiological and pathological processes of 
deep vein thrombosis (DVT). Based on that, lncRNA taurine upregulated gene 1 (TUG1)-involved angiogenesis of 
endothelial progenitor cells (EPCs) and dissolution of DVT was explored.

Methods: In the in-vitro experiments, EPCs were engineered with mimic, inhibitor, siRNA, and plasmid, after which 
tube formation, proliferation, migration, and apoptosis were checked. In the in-vivo experiments, a DVT mouse model 
was established. Before the DVT operation, the mice were injected with agomir, antagomir, siRNA, and plasmid. 
Subsequently, thrombosis and damage to the femoral vein were pathologically evaluated. TUG1, miR-92a-3p, and 
3-Hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression in the femoral vein was tested. The relation-
ship between TUG1, miR-92a-3p, and Hmgcr was validated.

Results: DVT mice showed suppressed TUG1 and Hmgcr expression, and elevated miR-92a-3p expression. In EPCs, 
TUG1 overexpression or miR-92a-3p inhibition promoted cellular angiogenesis, whereas Hmgcr silencing blocked 
cellular angiogenesis. In DVT mice, elevated TUG1 or inhibited miR-92a-3p suppressed thrombosis and damage to the 
femoral vein whilst Hmgcr knockdown acted oppositely. In both cellular and animal models, TUG1 overexpression-
induced effects could be mitigated by miR-92a-3p up-regulation. Mechanically, TUG1 interacted with miR-92a-3p to 
regulate Hmgcr expression.

Conclusion: Evidently, TUG1 promotes the angiogenesis of EPCs and dissolution of DVT via the interplay with miR-
92a-3p and Hmgcr.
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Introduction
Deep vein thrombosis (DVT) is a common manifesta-
tion of venous thromboembolism (VTE) and is defined 
as a form of thrombophlebitis associated with the for-
mation of blood clots in deep veins. DVT is sometimes 

asymptomatic but often presents as non-specific symp-
toms, such as discomfort or pain in the legs, or a feel-
ing of fever. Pain, tenderness, swelling or blue or red 
discoloration of the limbs are the typical symptoms [1]. 
Oral anticoagulants are the first-line treatment for VTE 
to hasten thrombus resolution because of lower bleeding 
risk. It takes at least 3 months to take anticoagulants to 
prevent early recurrence [2]. Endothelial progenitor cells 
(EPCs) could modify endothelial regeneration, revascu-
larization, vascular activity and angiogenic factor secre-
tion, protease production, thrombosis and recurrence 
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prevention, and vein wall remodeling [3]. In addition, 
EPCs can form new blood vessels by differentiating into 
endothelial cells, which could be utilized as a promising 
therapeutic regimen for DVT-associated thrombus reso-
lution in patients achieved limited success [4]. Therefore, 
targeting EPCs is a promising direction for the resolution 
of DVT.

Several long noncoding RNAs (lncRNAs) are listed 
as essential partners in multitudinous physiological and 
pathological processes of DVT, including proliferation, 
migration, and angiogenesis of EPCs [4, 5]. Specifically, 
lncRNA taurine upregulated gene 1 (TUG1) is a unique 
modifier for EPC function and angiogenesis under dia-
betic conditions [6]. Moreover, a report on aneurysms 
proposes that TUG1 overexpression induces EPC migra-
tion, invasion, and differentiation [7]. But, little is known 
about TUG1-mediated influence on EPCs angiogenesis 
in the setting of DVT. According to the latest annotation 
by the Ensembl database, there are 8 transcripts (iso-
forms) of Tug1 (https:// www. ensem bl. org/ Mus_ muscu 
lus/ Gene/ Summa ry? db= core;g= ENSMU SG000 00056 
579;r= 11: 35897 85- 35996 73). Tug1–202 is a transcript 
with length ≥ 200 bp and number of exons ≥2. After 
calculation, the minimum coverage of TUg1–202reads 
is ≥3, so subtype Tug1–202 was selected for our study. 
LncRNAs-mediated competitive binding of microR-
NAs (miRs) plays a vital role in regulating RNA tran-
scription. It has been widely explored that various miRs 
involve in the pathological possesses of DVT, including 
vascular endothelial cell physiology [8], autophagy and 
tube formation of EPCs [9], and recanalization and res-
olution [10]. It has been implicated that miR-92 could 
modify vascular smooth muscle cell function in vascu-
lar restenosis and injury [11]. miR-92a-3p is associated 
with oxidative stress in central venous catheter-related 
thrombosis (CRT) [12], and miR-92a-3p inhibition 
could hasten angiogenesis of endothelial cells, serving 
as a potential target for the treatment of atherosclerosis 
[13]. 3-Hydroxy-3-methylglutaryl coenzyme A reductase 
(Hmgcr) is the rate-limiting enzyme for the biosynthesis 
of cholesterol and isoprenoids. Jayoung Choi et  al. have 
specified that mevalonate, a metabolic product of Hmgcr, 
could restore venous angiogenesis [14].

Based on former publications, we studied TUG1-medi-
ated EPCs angiogenesis and DVT resolution via miR-
92a-3p/Hmgcr axis, expecting to discover a molecular 
way for the disease management.

Materials and methods
Ethical approval
This research was processed with the approval of the ani-
mal ethic committee of Beijing Haidian Maternal & Child 
Health Hospital.

Isolation and culture of EPCs
Using Histopaque 1077 density gradient centrifugation 
(Sigma-Aldrich, MO, USA), bone marrow mononuclear 
cells (MNCs) were isolated from C57 mice. MNCs/cm2 
 (106) were seeded on fibronectin-coated six-well plates 
in endothelial cell growth medium-2MV (EGM-2MV, 
Lonza, MD, USA) containing 10% fetal bovine serum, 
1% streptomycin and penicillin, and then cultivated in 
a constant temperature incubator at 37 °C with 5%  CO2. 
The adherent cells were removed 72 h later. Since that, 
the medium was renewed every 3 days [15].

After 10 d, adherent cells were fixed with 2.5 mg/mL 
DiI-acetylated-low density lipoprotein (DiI-ac-LDL, 
Peking Union-Biology, Beijing, China) for 2 h and with 
2% paraformaldehyde (Sigma) for 5 min. Subsequently, 
cells were incubated with 10 mg/L fluorescein isothiocy-
anate labeled ulex europaeus agglutinin (Sigma) for 1 h.

EPCs were incubated with primary antibodies CD133 
and FLK-1 (both from Abcam, Cambridge, UK) and 
combined with Cy3 (BOSTER, Wuhan, China) or fluo-
rescein isothiocyanate (FITC; Santa Cruz, CA, USA). 
Representative micrographs were obtained with a 
microscope (Olympus, Tokyo, Japan) [16].

EPCs transfection
Lipofectamine 3000 (Invitrogen, CA, USA) was utilized 
for EPCs transfection. The transfection plans included 
oe-NC, oe-TUG1, NC inhibitor, miR-92a-3p inhibitor, 
NC siRNA, Hmgcr siRNA, oe-TUG1 + NC mimic, oe-
TUG1 + miR-92a-3p mimic, miR-92a-3p inhibitor + 
NC siRNA and miR-92a-3p inhibitor + Hmgcr siRNA 
(Antpedia, Shanghai, China). Cells were collected after 
48 h of transfection.

In vitro tube formation experiment
Growth factor-reduced Matrigel (BD Biosciences, NJ, 
USA) was solidified in 96-well plates at 50 μL/well. 
EPCs (1 ×  104) were resuspended in 200 μL endothe-
lial basal medium-2 without EGM-2 SingleQuots, and 
added onto Matrigel. Tube images were captured after 
18 h, and the number of tubes was recorded [17].

Cell counting kit (CCK)‑8 test
EPCs pre-cultured in 96-well plates at 5000 cells/well 
were added with CCK-8 solution (Dojindo, Kumamoto, 
Japan) at 0, 24, 48, and 72 h, respectively. Absorbance 
was measured at 450 nm with a microplate reader 
(BioTek Instruments, VT, USA).

Flow cytometry
Detection of apoptosis was carried out following the 
instruction of FITC Annexin V/propidium iodide 
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Apoptosis Detection Kit I (Ribobio, Guangzhou, 
China). Apoptosis of EPCs was examined on a FACS-
can flow cytometer (Becton Dickinson, NJ, USA), and 
data analysis was done by FlowJo software. The upper 
left quadrant (Q1) was necrotic cells: negative for FITC 
Annexin V staining and positive for PI staining; the 
upper right quadrant (Q2) was late apoptotic cells: pos-
itive for FITC Annexin V staining and positive for PI 
staining; the lower right quadrant (Q3) was early apop-
totic cells: positive for FITC Annexin V staining and 
negative for PI staining; the lower left quadrant (Q4) 
was live cells: negative for FITC Annexin V staining and 
negative for PI staining [18].

Transwell detection
EPCs (1 ×  105) were placed in the top compartment pre-
treated with Matrigel whereas EBM-2MV supplemented 
with 20% fetal bovine serum was in the lower compart-
ment. The membrane was stained with 0.1% crystal violet 
after 24-h cell activity, and the number of EPCs perme-
ating the membrane was calculated under an optical 
microscope (Olympus) [19].

Establishment of DVT animal models
Thirty minutes before DVT operation, various constructs 
at 10 nmol (oe-NC, oe-TUG1, NC antagomir, miR-92a-3p 
antagomir, NC siRNA, Hmgcr siRNA, oe-TUG1 + NC 
agomir, oe-TUG1 + miR-92a-3p agomir, miR-92a-3p 
antagomir + NC siRNA, and miR-92a-3p antagomir + 
Hmgcr siRNA) were dissolved in 200 μL normal saline 
and injected into mice through the tail vein. A DVT 
mouse model was established according to the method 
previously reported [20]. In the sham group, occlusion 
of the femoral veins on both sides was not performed. 
The mice were euthanized 24 h after the operation, and a 
fresh thrombus was taken and weighed [21, 22].

Observation of thrombus
Fresh thrombus was sliced, observed under an optical 
microscope (XP-330, Shanghai Bingyu Optical Instru-
ment Co., Ltd., Shanghai, China), and pathologically 
evaluated. 0 point meant no thrombosis, 1 point meant 
vascular occlusion < 50%, 2 points meant vascular occlu-
sion > 50% (incomplete occlusion), and 3 points meant 
complete vascular occlusion [23].

Hematoxylin‑eosin (HE) staining
Femoral vein samples of mice were taken, and a 1 cm 
blood vessel was cut from each vein and fixed with 10% 
neutral formaldehyde. The blood vessels were paraffin-
embedded and cut into 4 μm sections for hematoxylin 
and 1% eosin staining. After that, images were obtained 
under an optical microscope (OLYMPUS, Tokyo, Japan) 

and data analysis was performed by Image-Pro Plus 6.0 
software (IPP6.0, Media Cybernetics, MD, USA) [24].

Quantitative PCR analysis
Trizol (Thermo Fisher Scientific) was adopted to extract 
the total RNA from cells and tissues. Before reverse tran-
scription, RNase-free DNase I was used to remove pos-
sible DNA contamination such as genomic DNA in the 
extracted total RNA. PrimeScript RT reagent kit (Takara) 
or microRNA reverse transcription system (GeneP-
harma, Shanghai, China) was implemented to synthe-
size cDNA. SYBR Green quantitative PCR Master Mix 
(Takara) or miRNAs Quantitation Kit (GenePharma) was 
used for RT-qPCR analysis. miR-92a-3p expression was 
standardized by U6, while other genes were standardized 
by GAPDH. The  2^-ΔΔCT method was used to calculate 
the relative expression of each gene. RT-qPCR primers 
were supplemented in Supplementary Table 1 [4].

Immunoblotting analysis
Total protein in tissue and cells was extracted with radio-
immunoprecipitation assay lysis buffer, followed by 
sodium dodecyl sulphate polyacrylamide gel electropho-
resis. Then, a 5% skimmed milk-blocked polyvinylidene 
fluoride protein membrane (Micropore, Sigma) was incu-
bated with primary antibody against GAPDH (1:1000, 
Abcam) and Hmgcr (1:1000, Abcam), and with the 
appropriate secondary antibody. After shooting with the 
image analysis system (Bio-Rad), the immune complex 
was visualized using an enhanced chemiluminescence kit 
(Amsham, UK) [25].

RNA immunoprecipitation (RIP) assay
EPC lysate collected by RIP lysis buffer (protease inhibi-
tor and RNase inhibitor) was cultivated with protein-G/A 
plus agarose and Ago2 antibody (Abcam) or immuno-
globulin G (IgG; Abcam). The precipitated RNA was 
extracted using Trizol (Thermo Fisher Scientific) follow-
ing the manufacturer’s protocol and was subjected to RT-
qPCR analysis [26].

Luciferase reporter assay
Amplified wild type (Wt)-TUG1/mutant (Mut)-TUG1 
or Wt-Hmgcr 3’UTR/Mut-Hmgcr 3’UTR sequence was 
cloned into PGL3 basic vector (Promega, WI, USA). The 
reporter was co-transfected with NC mimic and miR-
92a-3p mimic into EPCs. Luciferase activity was meas-
ured using a dual luciferase reporter gene assay system 
(Promega) after 48 h [27].

Chromatin immunoprecipitation (ChIP) assay
ChIP was performed via Pierce Sepharose Chip Kit 
(Thermo Fisher Scientific). Cells were cross-linked in 1% 
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formaldehyde and quenched by glycine solution. The cell 
pellets were lysed with micrococcal nuclease, and the 
supernatant was reacted with anti-Hmgcr (1:200, Abcam) 
or IgG, and precipitated with Protein A/G Sepharose 
beads (Thermo Fisher Scientific). The protein/DNA com-
plex was eluted by proteinase K, and genomic DNA frag-
ments were analyzed by quantitative PCR.

Statistics
Data were analyzed using SPSS 21.0 (IBM, NY, USA), 
and the measurement data were represented by 
mean ± standard deviation. The normal distribution and 
variance homogeneity were initially measured. As for 
data fitting normal distribution and variance homogene-
ity, an unpaired two-tailed Student’s t-test was utilized 
when comparing two experimental groups, while three 
experimental groups were analyzed using one-way anal-
ysis of variance (ANOVA) followed by Tukey’s post hoc 
test. P < 0.05 was meaningful for statistical significance.

Results
EPCs identification and DVT mouse model establishment
The isolated cells showed a cobblestone-like morphol-
ogy (Fig.  1A), and could be combined with DiI-ac-LDL 
and FITC-UEA (Fig. 1B), indicating the differentiation of 
EPCs. Immunofluorescence staining confirmed the cells 
as EPCs based on the expression of the cellular surface 
antigens CD133 and FLK-1, which were standard EPC 
markers (Fig. 1C).

After the DVT operation, the mice were euthanized 
and the thrombus was weighed. It was found that the 
thrombus was heavier in mice after DVT operation 
(Fig.  1D). HE staining exhibited that normal mouse 
femoral vein tissue structure was intact and undamaged, 
spindle-shaped endothelial cells were uniformly arranged 
and uniform in size; vascular smooth muscle cells were 
neatly arranged, and the intima was smooth and even. 
After the DVT operation, disorders of the endothelium, 
vascular endothelial cells, vascular smooth muscle, a 
large amount of focal inflammation, and exudation of 
the vessel wall and interstitial tissue were seen, the vessel 
wall became thinner, and the thrombus extended to the 
vessel lumen (Fig.  1E). Meanwhile, increased thrombus 
score was observable in DVT mice (Fig. 1F). In summary, 
EPCs were successfully isolated and the mouse DVT 
model was successfully established.

TUG1 promotes angiogenesis of EPCs and resolution 
of DVT
TUG1 expression was checked by RT-qPCR, showing 
that TUG1 expression in DVT mice was low (Fig.  2A). 
Oe-TUG1 construct was transfected into EPCs, and 
RT-qPCR confirmed that TUG1 was successfully up-
regulated (Fig.  2B). In  vitro angiogenesis, CCK-8, flow 
cytometry, and Transwell experiments indicated that 
TUG1-overexpressed EPCs had a stronger ability of angi-
ogenesis, proliferation, and migration, accompanied by 
reduced apoptosis rate (Fig. 2C-F).
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In the mouse model of DVT, the oe-TUG1 injection 
was performed. It was addressed that TUG1 overexpres-
sion decreased the weight of thrombus (Fig. 2G), attenu-
ated vascular cell disorder and inflammation, thickened 

blood vessel wall, reduced the area of thrombus (Fig. 2H), 
and reduced the thrombosis score of DVT mice (Fig. 2I). 
Taken together, TUG1 can promote EPCs angiogenesis 
and DVT resolution.
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Interaction between TUG1 and miR‑92a‑3p
The binding sites of TUG1 and miR-92a-3p were pre-
dicted by Starbase (http:// starb ase. sysu. edu. cn/) 
(Fig.  3A). Luciferase activity assay and RIP experi-
ment further verified the binding relationship between 
TUG1 and miR-92a-3p, as the results shown that the 
luciferase activity of EPCs transfected with Wt-TUG1 
and miR-92a-3p mimic decreased (Fig.  3B); AGO2 
had a promoting effect on the enrichment of TUG1 
(Fig.  3C). RT-qPCR suggested that when TUG1 expres-
sion increased, miR-92a-3p expression was decreased 
(Fig.  3D). ChIP experiment disclosed the enrichment of 
Hmgcr on the promoter of TUG1 (Fig.  3E). The above 
results indicate that TUG1 has a modification impact on 
miR-92a-3p expression.

Down‑regulating miR‑92a‑3p promotes angiogenesis 
and resolution of DVT
As reported, miR-92a-3p is up-regulated in CRT [12]. 
In a mouse-based DVT model, RT-qPCR suggested that 
miR-92a-3p was highly expressed (Fig.  4A). Aiming to 
decipher the miR-92a-3p-related mechanism in EPCs 
angiogenesis, miR-92a-3p expression in EPCs was modi-
fied by transfection with miR-92a-3p inhibitor (Fig. 4B). 
Subsequently, cellular experiments presented that miR-
92a-3p-depleted EPCs had promoted tube formation, 
proliferation, and migration abilities, and decreased 
apoptosis rate (Fig. 4C-F).

miR-92a-3p expression in DVT mice was downregu-
lated by tail vein injection with miR-92a-3p antagomir. 

It was found that miR-92a-3p suppression could reduce 
the weight of thrombus (Fig.  4G), relieved thrombosis 
(Fig. 4H), and reduced the thrombosis score of DVT mice 
(Fig. 4I). All in all, down-regulating miR-92a-3p induces 
EPCs angiogenesis and resolution of DVT.

Target relation between miR‑92a‑3p and Hmgcr
Binding sites existed between miR-92a-3p and Hmgcr 
according to the result of Starbase (Fig.  5A). Luciferase 
reporter test presented that the luciferase activity of 
EPCs co-transfected with miR-92a-3p mimic and Wt-
Hmgcr was significantly decreased, while the luciferase 
activity of EPCs transfected with Mut-Hmgcr and miR-
92a-3p mimic did not change significantly (Fig. 5B); RIP 
test examined that Hmgcr enrichment was seen under 
AGO2 condition (Fig.  5C). Western blot showed that 
Hmgcr expression was promoted in the presence of miR-
92a-3p down-regulation (Fig.  5D). Precisely, a negative 
interaction exists between miR-92a-3p and Hmgcr.

Knockdown of Hmgcr inhibits EPCs angiogenesis 
and aggravated thrombosis formation
It has been discussed that injection of mevalonate, a 
metabolite of Hmgcr, can induce venous angiogen-
esis [14]. RT-qPCR and Western blot demonstrated 
that Hmgcr expression was deficient in mice with DVT 
(Fig.  6A). For clarifying the Hmgcr-mediated process 
of EPCs angiogenesis, Hmgcr expression was regulated 
in EPCs by Hmgcr siRNA (Fig. 6B, C). Based on Hmgcr 
silencing, fewer tubes, decreased proliferation and 
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migration, in concert with increased apoptosis rate of 
EPCs were detectable (Fig. 6D-G).

Hmgcr siRNA injection was implemented in DVT 
mice, causing thrombus weight increase (Fig. 6H), throm-
bus aggravate (Fig.  6I), and thrombosis score elevate 
(Fig.  6J). In conclusion, knocking down Hmgcr inhibits 
EPCs angiogenesis and DVT resolution.

The interplay of TUG1/miR‑92a‑3p/Hmgcr in the resolution 
of DVT
In in  vitro EPCs, miR-92a-3p mimic was transfected 
based on oe-TUG1 interference (Fig.  7A); meanwhile, 
Hmgcr siRNA was introduced into EPCs based on miR-
92a-3p inhibitor treatment (Fig. 7B). Data obtained from 
cell-based tests revealed that EPCs angiogenesis induc-
tion mediated by oe-TUG1 or miR-92a-3p inhibitor 
could be counteracted by miR-92a-3p mimic or Hmgcr 
siRNA, respectively (Fig. 7C-F).

Animal experiments found that miR-92a-3p agomir or 
Hmgcr siRNA could respectively rescue the effects of oe-
TUG1 or miR-92a-3p antagomir on the weight of throm-
bus (Fig. 7G), femoral vein pathological damage (Fig. 7H), 
and thrombosis score (Fig. 7I) of DVT mice.

Discussion
VTE is the third most frequent cardiovascular disease 
besides myocardial infarction and stroke [28]. In a cell 
model and a mouse model, we confirmed that TUG1 
overexpression promoted angiogenesis of EPCs and reso-
lution of DVT in mice via miR-92a-3p down-regulation 
and subsequent Hmgcr up-regulation.

TUG1 is involved in a variety of cell signaling pathways 
and tissue-specific expressions. Its size is 7.1 kb, which is 
large enough to fold into a complex secondary/tertiary 
structure [29]. It has been indicated that TUG1 expres-
sion is constrained in acute lung injury based on a mouse 
model, and TUG1 overexpression could protect primary 
murine pulmonary microvascular endothelial cells from 
lipopolysaccharide (LPS)-induced apoptosis [30]. For 
EPCs, TUG1 restoration rescues high glucose-induced 
decline of cellular migration, invasion, and tube forma-
tion abilities, while for diabetic mice, TUG1 overexpres-
sion induces angiogenesis in the ischemic limbs [6]. In a 
cell model of sepsis, TUG1 up-regulation could present 
human umbilical vein endothelial cells from LPS-induced 
apoptosis [31]. As indicated previously, TUG1 induc-
tion is multifunctional regarding proliferation, invasion, 
and angiogenesis promotion of trophoblasts in the set-
ting of preeclampsia [32]. Long J et  al. have supported 
that podocyte-specific elevation of TUG1 could improve 
diabetic nephropathy-associated biochemical and histo-
logical features in mice [33]. In our work, examination 
of TUG1 expression indicated that TUG1 was poorly 

expressed in DVT mice. Concerning the action of TUG1, 
our experimental observations presented that restoration 
of TUG1 accelerated proliferation, migration, and tube-
forming abilities whilst decelerated apoptosis of EPCs; 
in DVT mice, overexpressed TUG1 exerted to decrease 
thrombus, and relieve femoral vein pathological damage.

Many articles have demonstrated that TUG1 is a 
sponge for many miRNAs [34–37]. In the preliminary 
research, we found that miR-92a-3p was targeted by 
TUG1 by the bioinformatics website Starbase (https:// 
starb ase. sysu. edu. cn/ agoCl ipRNA. php). Therefore, we 
chose miR-92a-3p as the research direction. miR-92a-3p 
is a quantified miRs involved in the regulation of vascu-
lar performance, and it is up-regulated in patients with 
coronary artery disease [38], as well as in high-density 
lipoprotein fraction of early diabetic mice after ischemia 
[39]. It has been elaborated that miR-92a-3p is associ-
ated with endothelial dysfunction, and aberrant elevation 
of miR-92a-3p expression is recorded in the venous tis-
sue of rats with CRT [12]. On the other hand, endothe-
lial miR-92a-3p expression is induced after renal injury, 
and dual suppression of miR-92a-3p/miR-489-3p can 
relieve atherosclerosis based on a mouse model [40]. It 
is well-established that up-regulated miR-92a is involved 
in endothelial injury, and suppression of miR-92a is fea-
sible to protect endothelial cells in response to acute 
myocardial infarction [41]. It is known that hypoxia or 
high glucose induces injury of EPCs, in which miR-92a 
suppression could enhance cellular migration and tube 
formation abilities [42]. To improve neovascularization, 
Shyu KG et al. have verified that hyperbaric oxygen has 
valuable therapeutic effects partly through enhancing 
lncRNA metastasis-associated lung adenocarcinoma 
transcript  1-mediated down-regulation of miR-92a [43]. 
Based on the sponge adsorption phenomenon between 
TUG1 and miR-92a-3p, the role of miR-92a-3p was sur-
veyed in detail. The findings displayed that miR-92a-3p 
inhibition similarly phenocopied the impacts of overex-
pressed TUG1 on EPCs in vitro and DVT mice in vivo.

Angiogenesis is regulated by the Hmgcr pathway 
through the differentially regulated arteriovenous 
demand for protein prenylation in endothelial cells [14]. 
Hmgcr function impairment disturbs the stability of cer-
ebral blood vessels, leading to the progressive expansion 
of blood vessels and subsequent rupture of blood vessels 
[44]. From our analysis, it was noticeable that miR-92a-3p 
had a targeted regulatory effect on Hmgcr expression. 
Given that, we subsequently found that Hmgcr suppres-
sion blocked EPCs’ activities, and aggravated DVT in 
mice.

All in all, our study analysis exhibited the TUG1-
induced protection against DVT through interacting 
with miR-92a-3p and Hmgcr. This research has delved 

https://starbase.sysu.edu.cn/agoClipRNA.php
https://starbase.sysu.edu.cn/agoClipRNA.php
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into a brand-new way to treat DVT from the molecular 
TUG1/miR-92a-3p/Hmgcr cascade. One of the study 
limitations is that the signaling pathway involved in the 

TUG1/miR-92a-3p/Hmgcr axis-regulated DVT resolu-
tion was not explored. Additionally, TUG1 is a sponge 
of the many miRNAs, and miR-92a-3p is not the only 
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miRNA responsible for the phenotype observed in this 
study, therefore, further research is warranted to validate 
our findings.
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