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(Abstract )

and plasma and their detection methods.

Neutrophil extracellular traps (NETs) may be associated with the development of thrombosis. Experimental studies
have confirmed the presence of NETs in thrombi specimens and potential role of NETs in the mechanisms of throm-
bosis. Clinical studies also have demonstrated significant changes in the levels of serum or plasma NETs biomark-

ers, such as citrullinated histones, myeloperoxidase, neutrophil elastase, nucleosomes, DNA, and their complexes in
patients with thrombosis. This paper aims to comprehensively review the currently available evidence regarding the
change in the levels of NETs biomarkers in patients with thrombosis, summarize the role of NETs and its biomarkers in
the development and prognostic assessment of venous thromboembolism, coronary artery diseases, ischemic stroke,
cancer-associated thromboembolism, and coronavirus disease 2019-associated thromboembolism, explore the
potential therapeutic implications of NETs, and further discuss the shortcomings of existing NETs biomarkers in serum
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Introduction

Thrombosis, which refers to the formation of blood
clots in arterial and venous vessels, is a consequence of
inherited or acquired imbalance of procoagulant, anti-
coagulant, and fibrinolytic factors [1], and results in
high morbidity and mortality [2, 3]. Knowledge regard-
ing underlying mechanisms of thrombosis is necessary
to improve its management strategy. Traditionally, it is
thought that thrombus should be formed by the interac-
tion of platelets, fibrin, and red blood cells. Neutrophils
are the first-line defense against invading pathogens
[4]. Recently, it has been recognized that the release of
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neutrophil extracellular traps (NETs) may contribute
to the development of thrombosis [5-8]. NETs release
is caused by stimulated neutrophils which form web-
like structures mainly composed of extracellular DNA,
histones, and granular proteins, such as neutrophil
elastase (NE), myeloperoxidase (MPO), and calprotec-
tin, etc [9, 10]. The current review paper primarily aims
to summarize the role of NETs and its biomarkers in
the development and prognostic assessment of venous
thromboembolism (VTE), coronary artery diseases
(CAD), ischemic stroke (IS), cancer-associated throm-
boembolism, and coronavirus disease 2019 (COVID-
19)-associated thromboembolism, explore the potential
therapeutic implications of NETs, and further discuss the
shortcomings of existing NETs biomarkers in serum and
plasma and their detection methods.

Mechanisms of NETs formation
NETs formation, a unique form of cell death process
[11], release decondensed chromatin and granular
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proteins with nuclear materials [12]. Until now, there
are two potential mechanisms of NETs formation [13].
The first mechanism is lytic-NETs formation, which
can be induced by phorbol myristate acetate or choles-
terol crystal. Peptidyl arginine deiminase 4 (PAD4) may
be activated by reactive oxygen species (ROS) [13-15],
which can be generated by nicotinamide adenine dinu-
cleotide phosphate (NADPH) or mitochondria [16, 17],
or calcium ionophore [18], thereby leading to the cit-
rullination of arginine residues of histones [18]. Nota-
bly, gasdermin D is required for ROS generation [19].
Meanwhile, MPO and NE can be translocated by ROS
into the nucleus [20]. Subsequently, neutrophils exhibit
rapid disassembly of the actin cytoskeleton, followed by
shedding of plasma membrane microvesicles, disassem-
bly and remodeling of the microtubule and vimentin

cytoskeletons, endoplasmic reticulum vesiculation,
chromatin decondensation and nuclear rounding, and
progressive permeabilization of plasma membrane and
nuclear envelope [21]. Then, protein kinase C a-mediated
lamin B phosphorylation drives nuclear envelope rup-
ture to release chromatin [22]. Finally, NETs are released
after plasma membrane rupture [21] (Fig. 1). The second
mechanism is non-lytic NETs formation, which can be
induced by certain bacteria, such as E. coli, S aureus, or
Candida albicans, through the activation of neutrophils
mediated by Toll-like receptors (TLRs) or complement
receptors [23], independent of NADPH oxidase activa-
tion. By this way, neutrophils are still alive and preserve
their functions to move and phagocytose to some extent
[23]. Besides, autophagy may provide another insight into
the mechanisms of NETSs formation [24, 25]. Collectively,
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some biomarkers involved in the NETs formation should
include independent extracellular DNA, proteins derived
from neutrophils (i.e., MPO and NE), proteins required
for NETs formation (i.e., PAD4 and citrullinated his-
tones), and their complexes.

NETs promote thrombosis

NETs may contribute to the development of thrombo-
sis by forming a “scaffold’, which induces platelets adhe-
sion, activation, and aggregation, recruits red blood
cells, and maintains the stability of thrombus together
with fibronectin, fibrinogen, and von Willebrand factor
(VWE) [26]. The interaction of neutrophils with platelets
depends on the adhesion molecules, such as P-selectin,
P-selectin glycoprotein ligand 1, glycoprotein Ib, and
macrophage-1 antigen [27]. Additionally, platelet-derived
high mobility group box 1 (HMGB1) mediates both NETs
formation and thrombosis [28, 29]. HMGBI can interact
with TLR4 [30], enabling neutrophils to release NETs.
Furthermore, HMGB1 can promote early recruitment
of platelets [31], thereby enhancing the pro-thrombotic
effect and promoting the development of thrombosis.

The components of NETs themselves can also affect the
formation of thrombosis. Histones are responsible for tis-
sue factor activity [32], platelet activation via mediating
TLR2 and TLR4 [33], platelet aggregation via inducing
calcium influx and fibrinogen recruitment [34], reduc-
tion of thrombomodulin-dependent protein C activation
[35], and release of activated thrombin [36, 37]. Further-
more, histone 4 promotes prothrombin autoactivation to
thrombin [38]. DNA, which is deemed as another com-
ponent of NETs, is reported to shorten clotting time, pro-
mote FXII activation and FXIa generation, and amplify
tissue factor-initiated thrombin generation [12]. Both
histones and DNA can increase the median fiber diam-
eter of plasma clots [39]. PAD4 can accelerate the devel-
opment of thrombosis via protecting VWE-platelets
string from the cleavage of endogenous a disintegrin and
metalloproteinase with thrombospondin type-1 motif-13
(ADAMTS13) [40]. Other components of NETSs, includ-
ing NE, cathepsin G, and nucleosomes, are responsible
for promoting coagulation and intravascular thrombus
growth through enhancing intrinsic and extrinsic coagu-
lation pathways [41].

Collectively, NETs can affect the development of
thrombosis via multiple ways. Additional evidence
regarding how NETs promote thrombosis is also
emerging.

NETs biomarkers and VTE

VTE primarily comprises of deep vein thrombosis
(DVT) and pulmonary embolism (PE). Experimen-
tal and clinical studies have confirmed the presence of
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NETs biomarkers in VTE specimens. Extracellular DNA
was in close proximity to neutrophils, together with
positive staining of MPO, NE, and histones by immu-
nostaining assay after induction of venous thrombosis
[42]. Additionally, citrullinated histone H3 (H3Cit) was
observed in the red [43] or fresh red fibrin-rich parts
of thrombi [44]. In baboons with iliac vein thrombo-
sis, dotted and diffuse staining of DNA and positive
staining of DNA-histone could be observed in thrombi
[26]. Human venous thrombi from surgical samples or
autopsies revealed the colocalization of DNA, DNA-
histone complexes, and MPO [45], that of DNA, MPO,
CD11b, and H3Cit [46], and that of DNA, MPO, H3Cit,
pan-Cit, and PAD4 in organizing thrombi [46].

NETs biomarkers have been quantitatively evaluated
in VTE patients in several clinical studies [44, 47-58]
(Table 1). The levels of plasma DNA [53], H3Cit-DNA
[58], and NE [58] were elevated in VTE patients. The
level of plasma MPO had a good diagnostic perfor-
mance of VTE [59], while the diagnostic accuracy
of H3Cit-DNA and NE was not superior to that of
D-dimer [58]. On the other hand, the expression of
NETs biomarkers may depend on the locations of VTE.
The levels of plasma DNA and nucleosomes were sig-
nificantly different between elderly patients with PE
and DVT [50]. Besides, the levels of plasma DNA and
calprotectin were higher in patients with splanchnic
vein thrombosis (SVT) than those with DVT, whereas
the level of MPO was much higher in patients with
DVT of the lower limbs than those with SVT [52]. Clin-
ical evidence regarding NETs biomarkers in patients
with VTE at various locations are separately reviewed
in the following paragraphs.

DvT

In a case—control study, the levels of plasma NE-al-
antitrypsin complexes and nucleosomes > 80th percen-
tile (odds ratio [OR]=3.0 and OR=2.4) significantly
increased the risk of symptomatic DVT regardless of
adjustment for potential confounders [49]. By contrast,
another study did not show any significant difference
in the levels of serum NE and nucleosomes between
patients with DVT and healthy controls [51]. Thus, more
evidence is necessary to clarify the association of NE and
nucleosomes with DVT. Notably, among the currently
published studies, the levels of serum MPO, MPO-DNA,
and DNA were significantly higher in patients with DVT
than those without DVT or healthy controls [48, 51, 52].
Furthermore, the levels of plasma H3Cit and DNA can be
used for the diagnosis of DVT in patients with traumatic
fractures [55].
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PE

A recent study found that the levels of plasma neutro-
phils, MPO, and DNA, rather than H3Cit, were signifi-
cantly elevated in patients with chronic thromboembolic
pulmonary hypertension as compared with healthy con-
trols [44]. By contrast, another study demonstrated that
the level of plasma H3Cit was almost fivefold higher in
patients with acute PE than healthy controls [54]. Such
a difference in the expression of plasma H3Cit between
the two studies might be attributed to the stage of dis-
ease (chronic versus acute). On the other hand, NETs
biomarkers can also reflect the severity of PE. The levels
of plasma DNA deriving from mitochondria and nucleus
were higher in patients with massive PE than those with
sub-massive PE [47]. Notably, it should be acknowl-
edged that this change of NETs biomarkers might also be
derived from damaged tissues during severe PE. Addi-
tionally, higher level of plasma DNA was independently
associated with increased PE-related mortality [50] and
all-cause mortality [47, 50], but not the recurrence of
VTE during a 3-year follow-up period [50]. Similarly, the
level of plasma H3Cit could also predict acute PE-related
death [54].

PVT

A European prospective cohort study did not find any
significant relationship between the levels of plasma
MPO-DNA and DNA at baseline and the development of
portal vein thrombosis (PVT) in patients with liver cir-
rhosis during a mean follow-up period of 48 months [56].
However, it should be noted that a majority of patients
included in this cohort study had Child—Pugh class A,
suggesting that they had well-preserved hepatic function
[60]. By comparison, a Chinese cross-sectional study,
in which a majority of cirrhotic patients included had
Child-Pugh class B+ C (69.4%), demonstrated that the
levels of plasma H3Cit, NE, and MPO were significantly
higher in patients with PVT than those without PVT,
and positively correlated with thrombin-antithrombin
(TAT) complex and FX, which are well-known markers
for hypercoagulability [57]. Such a controversy should
be further clarified in cirrhotic patients according to the
severity of liver dysfunction.

NETs biomarkers and CAD

CAD encompasses stable angina, unstable angina, myo-
cardial infarction (MI), and sudden cardiac death due to
the occurrence of atherosclerosis or thrombosis in coro-
nary arteries [61]. NETs formation has been detected
by positive staining of Ly6G, DNA, MPO, and H3Cit in
mice’s atherosclerotic lesions [62-64]. Immunostaining
assay found the colocalization of CD177, NE, and DNA
in patients’ carotid plaques [65]. By immunostaining of
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patients’ carotid and coronary plaques, another study
also demonstrated that CD66b, NE, H4Cit, and DNA
were in contact with the luminal surface of erosion-prone
plaques and localized within rupture-prone plaques
[66]. Additionally, the colocalization of histones, NE,
and MPO was commonly observed in fresh and lytic
coronary thrombi from MI patients, rather than organ-
ized coronary thrombi [67]. The other colocalizations
of MPO, H3Cit, and DNA [68] and DNA, DNA-histone
complexes, and MPO [45] were also detected in coronary
thrombi.

Some clinical studies have been performed to evalu-
ate the importance of NETs biomarkers in CAD patients
[69-80] (Table 2). It seems that NETs biomarkers could
predict the disease severity, hypercoagulability, and
worse clinical outcomes in CAD patients. The levels of
plasma MPO-DNA, nucleosomes, and DNA were sig-
nificantly elevated in patients with more severe CAD,
and could predict the number of diseased coronary
artery segments and the incidence of major adverse car-
diac events (MACE). Among them, only higher level of
plasma nucleosomes was an independent risk factor for
severe coronary stenosis, and only higher level of plasma
DNA was independently associated with prothrombotic
state [71]. Another large-scale study involving 1001 CAD
patients found that higher level of serum DNA was signif-
icantly associated with hypercoagulability and predicted
worse clinical outcomes [73]. Both studies suggested that
DNA could predict hypercoagulability, and other NETs
biomarkers, such as nucleosomes and MPO-DNA, might
be useful to predict CAD progression.

Mmi

MI is primarily associated with plaque rupture and
erosion [81]. Until now, the role of NETs biomarkers
in patients with MI has been more comprehensively
explored as compared to those with other types of CAD.
The level of plasma DNA was higher in patients with
acute MI (AMI) than healthy controls [69] and stable
angina [72], and positively correlated with Gensini and
GRACE scores [72] and peak levels of creatine kinase
(CK) and troponin-T [70]. Particularly, in ST elevation
MI (STEMI) patients admitted for percutaneous coro-
nary intervention (PCI), the levels of plasma H3Cit [77],
MPO-DNA [76, 78], and DNA [76-78] were significantly
higher in infarct-related coronary arteries than peripheral
arteries [76, 77] or in anterior MI than other locations of
infarction [78]. The levels of serum MPO-DNA and DNA
became the highest in STEMI patients before PCI, and
decreased after PCI [74]. Both H3Cit and DNA levels
positively correlated with infarct size [74, 77], and high
level of DNA was usually associated with increased risk
of developing lower left ventricular ejection fraction [74],
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adverse clinical events [76], and all-cause mortality [78].
Importantly, DNA level had a predictive value for in-hos-
pital mortality in STEMI patients, which was equivalent
to that of troponin I [75], troponin T, and CK-MB [76].
Higher level of serum DNA is also associated with hyper-
coagulability indicated by elevated D-dimer and pro-
thrombin fragment 142 levels in STEMI patients [78]. A
composite score of NETs biomarkers and platelet count
showed the most favorable predictive value for MACE in
non-ST and STEMI patients [80].

NETs biomarkers and IS

IS can be caused by cardiac embolism, atherosclerosis of
cerebral circulation, and occlusion of small vessels result-
ing in high mortality and disability worldwide [82]. In
a rat model, a significant increase in the level of serum
DNA was observed at 24 h after the onset of IS. DNA
level was positively associated with the total infarct vol-
ume, brain edema, and neurologic severity score (cor-
relation coefficient=0.78, 0.91, and 0.73, respectively)
[83]. Abundant neutrophils and NETs were also found
in thrombi from patients with acute IS (AIS) by the colo-
calization of CD66b, H3Cit, and DNA, that of H3Cit and
NE [84], or that of H4Cit, MPO, and DNA [85]. Mean-
while, neutrophils and H3Cit were especially higher in
older thrombi than fresh thrombi by calculating the area
of H3Cit positive staining [84].

NETs biomarkers have been explored in AIS patients
(Table 3) [75, 86, 87]. In a prospective cohort study, the
level of plasma DNA was elevated by threefold in AIS
patients compared with non-AIS patients, and exhibited
a positive correlation with infarct size [86]. Besides, the
levels of plasma nucleosomes and H3Cit were also ele-
vated in AIS patients with a history of atrial fibrillation,
NIHSS score > 14 at onset, NIHSS score > 6 at discharge,
and mRankin scale score>2 at discharge [87]. The high-
est quartile level of plasma H3Cit was independently
associated with atrial fibrillation (OR=6.7) and all-cause
mortality (OR=7.1) during one-year follow-up period
[87]. Furthermore, the levels of plasma H3Cit, MPO,
and DNA were significantly increased in IS patients with
elevated hypersensitive troponin T levels as compared to
those with normal hypersensitive troponin T levels [88].

NETs biomarkers and cancer-associated thromboembolism
Thromboembolism is one of the most common comor-
bidities associated with cancer and also a leading cause
of death for cancer patients [89, 90]. NETs formation has
been detected in animal models of cancer and patients
with cancer-associated thrombosis. Increased levels of
plasma H3Cit, NE, and DNA were found in mice bear-
ing pancreatic tumors [91]. Additionally, in murine mod-
els of chronic myelogenous leukemia and breast and

Page 9 of 17

lung cancers, NETs formation was implied by the colo-
calization of DNA, fibrin, and VWF in thrombi as well
as web-like patterns [92]. In patients with gastric cancer,
the levels of NETs biomarkers released by neutrophils
cultured in vitro were positively associated with TAT
complex and D-dimer levels, indicating that NETs might
contribute to hypercoagulability [93]. Besides, in patients
with cancer, NETs formation was indicated by the colo-
calization of H3Cit and DNA in cerebral, coronary, and
pulmonary microthrombi [88].

Recently, clinical studies have focused on the associa-
tion between NETs biomarkers and cancer-associated
thromboembolism[88, 94—-98] (Table 4).

VTE

The level of plasma nucleosomes was an independent risk
factor for DVT, irrespective of malignancy [49]. However,
in a large-scale study of 946 patients with malignancy,
higher levels of plasma nucleosomes and DNA could
only predict a higher risk of VTE, including PE, DVT,
and SVT, during the first 6-month follow-up period,
but only higher level of plasma H3Cit was an independ-
ent predictor of VTE during the overall follow-up period
and comparable to D-dimer, soluble P-selectin, FVIII,
and prothrombin fragment 142 for predicting VTE.
More importantly, H3Cit significantly increased the risk
of VTE in patients with pancreatic and lung cancer, but
not those with cancers in other sites [94]. The levels of
plasma DNA-histone and DNA, rather than NE, were
significantly higher in hepatocellular carcinoma patients
with PVT than those without PVT[97]. In patients with
colorectal cancer, the levels of plasma MPO-DNA and
DNA also positively correlated with the levels of plasma
TAT complex and D-dimer, suggesting that NETs may
contribute to coagulation activation and increased risk of
VTE [99].

Arterial thrombosis

The levels of plasma nucleosomes and DNA were sig-
nificantly elevated in cancer-related stroke patients com-
pared with healthy-, cancer-, and stroke-controls. High
plasma DNA level was independently associated with
the risk of cancer-related stroke [95]. Furthermore, the
levels of plasma H3Cit, MPO, and DNA were signifi-
cantly elevated in IS patients with cancer as compared
to those without [88]. Conversely, a prospective obser-
vational cohort study revealed that the levels of plasma
H3Cit, DNA, and nucleosomes at baseline could not
predict a composite outcome of MI, IS, and peripheral
arterial occlusion in patients with malignancy, although
H3Cit and DNA significantly increased the risk of
death [96]. The level of plasma MPO-DNA was higher
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Table 3 Studies evaluating NETs biomarkers in IS
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First author/  Study design Included Groups (No. Samples NETs Analytical Detailed values
year patients patients) processing biomarkers methods
for NETs
biomarkers
O'Connelletal Case-control Patients experi- AlS (n=43) vs. Plasma, 2000 x g, DNA gPCR NA
(2017) [86] encing AlS and Negative AIS 10 min and
those identified (n=20) 10,000 x g,
as stroke mimics 10 min
Vallés et al Case—control and  Patients with AlIS (n=243)vs.  Plasma, 22 °C, H3Cit ELISA 0.080 vs. 0.039 AU
(2017) [87] cohort AlS during the HC (n=27) 2500 x g, 10 min Nucleosomes ELISA 0.329 vs. 0.209 AU
acute phase of
brain ischemia DNA SytogGreen 43211 vs.
and suffering fluorimetry 324.2 ng/mL
stroke<24 h
before admission
Lim et al Case-control and Patients with ACS (n=37) vs. Plasma, 1600 x g, DNA-histone ELISA 19.73 vs. 13.71 vs.
(2020) [75] cohort newly diagnosed  AlS (n=58) vs. 15 min 1432 muU
ACS orAlS HC (n=25) DNA PicoGreen fluor- 74328 vs. 524.22

imetry vs. 216.48 ng/mL

Abbreviations: ACS Acute coronary syndrome, AlS Acute ischemic stroke, AU Absorbance unit, H3Cit Citrullinated histone H3, ELISA Enzyme-linked immunosorbent
assay, HC Healthy control, IS Ischemic stroke, Min Minute, NA Not available, NETs Neutrophil extracellular traps, gPCR Quantitative polymerase chain reaction

in myeloproliferative neoplasms (MPNs) patients with
a history of arterial and venous thrombosis than those
without [98].

NETs biomarkers and COVID-19-associated
thromboembolism

Thromboembolism is common in COVID-19 patients
[100] and independently associated with hospitalized
mortality [101]. Immunostaining of lung, kidney, and
heart tissues of COVID-19 patients revealed positive
staining of H3Cit, MPO-DNA, NE, and DNA [102, 103].
Additionally, H3Cit, MPO, and DNA were colocalized
with platelet and fibrin in blood vessels, indicating the
involvement of NETs formation in the development of
immunothrombosis [104].

The levels of plasma MPO-DNA and H3Cit were sig-
nificantly higher in COVID-19 patients than healthy con-
trols [105], and the level of plasma MPO-DNA positively
correlated with the severity of COVID-19 [104]. Further-
more, the levels of plasma H3Cit-DNA, DNA, and NE
correlated with those of widely recognized plasma mark-
ers for coagulation and fibrinolysis (i.e., D-dimer, TAT
complex, and plasmin-antiplasmin) and endothelial acti-
vation and damage (i.e., VWF and ADAMTS13) [106].
The levels of plasma H3Cit and MPO-DNA were signifi-
cantly higher in COVID-19 patients with VTE than those
without. The areas under the curve of H3Cit and MPO-
DNA for predicting VTE were 0.791 and 0.769, respec-
tively [105]. The levels of serum H3Cit, MPO-DNA,
DNA, and calprotectin were still higher in COVID-19
patients with both arterial thrombosis and VTE than
those without thrombotic events, despite prophylactic

anticoagulation was prescribed at the time of diagnosis
of thrombotic events [107]. But such an association was
not confirmed by a prospective cohort study, which dem-
onstrated that the baseline level of plasma MPO-DNA
could not predict the development of thrombosis [108]
(Table 5).

Potential therapeutic implications

NETs may be a potential therapeutic target for the man-
agement of thrombosis. First, DNase I can dissolve NETs
structure, thereby compromising the formation of arte-
rial thrombosis [109, 110], and reducing the weight of
venous thrombus [42, 91] in mice. Ex vivo experiments
measured the change of thrombus weight after throm-
bolysis of human PE, CAD, and IS thrombi and showed
that either DNase I or tissue plasminogen activator (tPA)
alone could induce thrombolysis [85], and a combination
of DNase I and tPA further accelerated thrombolysis [45,
84, 85, 111]. This phenomenon may be attributed to the
capacity of tPA to remove fibrin and that of DNase I to
remove the "scaffold" of NETs connecting red blood cells
and platelets [26]. Second, heparin, a frequently used
anticoagulant, can remove histones in chromatin, then
dismantle NETs [26]. Third, Cl-amidine, a PAD inhibitor,
shows its ability to prevent thrombosis by inhibiting the
NETs formation. Treatment with Cl-amidine can reduce
the area of atherosclerotic lesion, prolong the time to
carotid artery thrombosis in atherosclerosis mice [62],
maintain the stability of cerebral perfusion, reduce the
size of the ischemic lesion, and prevent from the devel-
opment of thrombosis in IS mice [112]. GSK484, another
potent and selective inhibitor of PAD4, strongly inhibits
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Table 4 Studies evaluating NETs biomarkers in cancer-associated thromboembolism
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First author/ Study design Included Groups (No. Samples NETs Analytical Detailed values
year patients patients) processing biomarkers methods
for NETs
biomarkers
Thélin et al Case—control  Patients with IS Cancers (n=28) Plasma, 2000 x g, H3Cit ELISA 0.22 vs.0.07 OD
(2016) [88] vs-No cancers 20 min MPO ELISA 74.1 vs.37.8 ng/mL
(ﬂ = 23)
DNA PicoGreen fluor-  504.0 vs. 407.9 ng/
imetry mL
Mauracher etal  Cohort Adult patients VTE (n=289) vs. Plasma, 3000 x g, H3Cit ELISA 524 vs.24.1 ng/mL
(2018) [94] with newly NoVTE (n=857) 10 min Nucleosomes ELISA 1.3vs. 1.2 MoM
diagnosed malig- i
nancy or progres- DNA F|coGreen fluor-  384.5 vs. 355.8 ng/
sion of disease imetry mL
after remission
Bangetal Case—control  Patients with Cancer-stroke Plasma, 2000 x g, Nucleosomes ELISA 0.379 vs.0.189 vs.
(2019) [95] active cancer (n=138) vs. 15 min 0.251 vs.0.194 OD
Stroke-control DNA PicoGreen fluor-  40.35 vs. 34.38 vs.
(n=40) vs. imetry 34.52 vs. 3048 mg/
Cancer-control mlL
(n=27) vs. HC
(n=33)
Grilz et al Cohort Adult patients ATE (n=22) vs. Plasma, 3000 x g, H3Cit ELISA NA
(2019) [96] with newly No ATE (h=935) 10 min Nucleosomes ELISA NA
diagnosed )
malignancy or DNA ElcoGreen fluor-  NA
a progression imetry
of disease after
complete or par-
tial remission
Guy etal Case—control  Patients with Thrombosis Plasma, 2400 x g, DNA PicoGreen fluor-  NA
(2019) [98] MPN (h=16) vs. No 15 min imetry
thrombosis MPO-DNA ELISA NA
(n=15)
Seo et al Case—control  Patients with HCC  PVT (n=77) vs. Plasma, 1550 x g, DNA-histone ELISA 159 vs. 83 AU
DNA PicoGreen fluor-  142.1vs. 127.0 ng/

imetry mL

Abbreviations: ATE Arterial thromboembolism, AU Absorbance unit, ELISA Enzyme-linked immunosorbent assay, H3Cit Citrullinated histone H3, HC Healthy control,
HCC Hepatocellular carcinoma, IS Ischemic stroke, Min Minute, MPN Myeloproliferative neoplasms, MPO Myeloperoxidase, NA Not available, NE Neutrophil elastase,
NETs Neutrophil extracellular traps, OD Optical density, PVT Portal vein thrombosis, VTE Venous thromboembolism

the NETs formation and thrombus deposition in mouse
lungs [113]. Forth, ruxolitinib, a JAK1/JAK2 inhibitor, is
a second-line drug for the treatment of MPN [114]. It can
also abrogate the NETs formation and decrease the rate
of stenosis-induced venous thrombosis in JAK2V617F-
driven MPN mice [115]. Notably, all the above-men-
tioned evidence comes from animal and ex vivo
experiments, and clinical studies of NETs as a therapeutic
target for thrombosis have not been carried out yet.

Limitations of current NETs biomarkers

Circulating NETs biomarkers include serum or plasma
PAD4, H3Cit, MPO, NE, nucleosomes, or DNA, but
their specificity of reflecting NETs formation remains
uncertain. First, among the published studies, NETs
biomarkers have been measured in human serum and
plasma samples. However, it should be noted that neither

serum nor plasma is the exact position of NETs forma-
tion. Second, PAD4 is not only involved in citrullination
of histones during NETs formation, but also partici-
pates in other physiological processes, such as activation
of vascular smooth muscle cells [116] and regulation
of hematopoietic stem cell proliferation [117]. On the
other hand, Cl-amidine, which has been widely used for
the inhibition of PAD4 in NETs studies, is not a PAD4-
specific inhibitor, but a pan-PAD inhibitor [118]. Third,
citrullinated histones have been also observed during
apoptosis [119]. Furthermore, in the absence of NETs-
dependent stimulation, Western blot assay also shows
positive expression of citrullinated histones in liver tis-
sues [120]. Fourth, NE may be unnecessary for NETs
formation, because NE deficiency or inhibition does not
prevent NETs formation [121]. Fifth, MPO, which plays
an important role in antimicrobial responses, is also
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Table 5 Studies evaluating NETs biomarkers in COVID-19 associated thromboembolism
First author/ Study design Included patients Groups (No. Samples NETs biomarkers Analytical Detailed
year patients) processing methods for values
NETs biomarkers
Ouwendijk etal Case-controland  Critically ill Thrombosis Plasma MPO-DNA ELISA NA
(2021) [108] cohort patients (n=44) vs. No
with COVID-19 thrombosis
(n=33) vs. HC
(n=7)
Petito et al Case—controland  Hospitalized VTE (n=8)vs.No  Plasma, 4000 x g,  H3Cit ELISA NA
(2021) [105] cohort patients with VTE (h=27) vs. HC 10 min MPO-DNA ELISA NA
COVID-19 (n=31)
Zuoetal Case—control Hospitalized Thrombosis Serum Calprotectin ELISA NA
(2021) [1 07] paﬁents with (/’): 1 1) vs. No MPO-DNA ELISA NA
COVID-19 and thrombosis )
thrombosis (n=33) H3Cit ELISA NA
DNA PicoGreen fluor- NA
imetry

Abbreviations: COVID-19 Coronavirus disease 2019, ELISA Enzyme-linked immunosorbent assay, H3Cit Citrullinated histone H3, Min Minute, MPO Myeloperoxidase, NA

Not available, NETs Neutrophil extracellular traps, VTE Venous thromboembolism

expressed in monocytes and macrophages [122]. Sixth,
nucleosomes may also originate from lymphocytes, red
blood cells, and tumor cells, etc. [123]. Last, DNA can be
either cell-free or bound with histones or other proteins
in plasma and serum. Extracellular DNA is often consid-
ered a NETs biomarker, but can also be released during
other cell death processes (i.e., apoptosis, necrosis, and
pyroptosis) and active secretion (i.e., phagocytosis and
egestion of DNA) [124]. Therefore, considering low spec-
ificity of a single NETs biomarker, it may be more reliable
to combine two or more biomarkers for reflecting NETs
formation.

Quantitative analyses of NETs biomarkers are clini-
cally more useful and valuable. H3Cit, MPO-DNA, NE,
and nucleosomes are often measured by enzyme-linked
immunosorbent assay (ELISA), and DNA by quantitative
polymerase chain reaction or fluorimetry assays. How-
ever, the type of samples, preanalytical sample prepara-
tion, and analytical methods used for measuring NETs
biomarkers are heterogeneous among the published
studies. First, plasma was employed for measuring NETs
biomarkers in some studies, but serum in others. How-
ever, DNA levels are comparable in both plasma and
serum of the same individuals [51]. Second, the methods
on sample preparation, including the time from blood
collection to sample processing, processing temperature,
and centrifugal force, time, and frequency, often vary by
study, which might influence experimental results. Pre-
scriptive methods will helpfully improve the quality of
samples and minimize preanalytical errors associated
with sample preparation. Third, antibodies, assays, detec-
tion instruments, and manufacturers for detecting the
same NETs biomarker are often diverse, thereby leading

to the heterogeneity in experimental results among stud-
ies. Notably, the specificity of ELISA for the detection
of some NETs biomarkers, such as the measurement of
MPO-DNA complexes in human plasma, is question-
able [125]. Therefore, robust, accurate, reproducible,
well-standardized, and highly specific assays for measur-
ing NETs biomarkers are required before drawing solid
conclusions.

Conclusion

Taken together, the effect of NETs formation on throm-
bosis is supported by a growing number of experimen-
tal and clinical studies, in which NETs biomarkers have
been qualitatively and quantitatively measured. Particu-
larly, H3Cit, MPO, MPO-DNA, NE, nucleosomes, and
DNA, which are deemed as NETs biomarkers, have been
evaluated in VTE, CAD, IS, cancer-associated thrombo-
embolism, and COVID-19 associated thromboembo-
lism (Fig. 2). Collectively, circulating NETs biomarkers
seem to be associated with the presence and severity of
thrombosis and correlate with hypercoagulability, but
it remains unclear whether they can exactly reflect the
NETs formation related to thrombosis, especially in
patients with cancers and COVID-19. Instead of case—
control or cross-sectional studies comparing between
patients with thrombotic event and healthy population,
cohort studies, where the development of a thrombotic
event has been observed in the same population during
follow up, should be more conductive in drawing more
accurate and clinically relevant conclusions regarding
diagnostic performance and predictive ability of NETs
biomarkers. Routine detection of NETs biomarkers in
patients with thrombosis cannot be considered until
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NETs biomarkers

1S: CD66b*, H4Cit?, H3Cit?, MPO?, NE?, .\/
nucleosomes?, and DNA*?

Diagnosis Prognostication Treatment

VvV X

PE: H3Cit?, H3Cit-DNA?, MPO?, \/ \/
nucleosomes?, DNA-histone-MPO?, and DNA?

COVID-19-associated
thromboembolism: calprotectin?,
H3Cit?, MPO?!, MPO-DNA?, and DNA'?

and DNA*?

CAD: CD177%, CD66b?, H4Cit!, MPO- \/
DNA?, NE?, nucleosomes?, and DNA*? V

MI: H3Cit*2, H4Cit?, histone, MPO?,
MPO-DNA?, NE, NE-DNA?, DNA-histone®, Vv V X

and DNA?

. 2 2 - 2 2
PVT: H3Cit2, MPO?, MPO-DNA?, NE?, V x x

Cancer-associated thromboembolism:
H3Cit*?, MPO?, MPO-DNA?, NE?,
nucleosomes?, and DNA*?

DVT: calprotectin?, CD11b*, H3Cit*?,
H3Cit-DNA?, MPO*2, MPO-DNA?, NE*?,
nucleosomes?, PAD4!, DNA-histone?,
DNA-histone-MPQ?, and DNA*?

Vv X X

Pulmonary embolism; PVT, Portal vein thrombosis

Fig. 2 A schematic diagram of NETs biomarkers detected in human VTE, CAD, M, IS, cancer-associated thromboembolism, and
COVID-2019-associated thromboembolism Notes: ' NETs biomarkers that have been explored in human thrombi specimens. > NETs biomarkers that
have been explored in hurman plasma/serum. v/ NETs biomarkers that have been explored for diagnosis, prognostication, and/or treatment. x NETs
biomarkers that have not been explored for diagnosis, prognostication, or treatment. Abbreviations: CAD, Coronary artery diseases; COVID,
Coronavirus disease 2019; DVT, Deep vein thrombosis; H3Cit, Citrullinated histone H3; H4Cit, Citrullinated histone H4; IS, Ischemic stroke; M,
Myocardial infarction; MPO, Myeloperoxidase; NE, Neutrophil elastase; NETs, Neutrophil extracellular traps; PAD4, Peptidyl arginine deiminase 4; PE,

more robust evidence has been produced. Notably, it
should be acknowledged that existing NETs biomark-
ers in serum and plasma and their detection methods
are unsatisfactory. Besides, concomitant infection or
inflammation, use of anticoagulants, antiplatelet drugs,
and anti-cancer therapies, and effect of invasive or sur-
gical procedures may influence the reliability of the cur-
rent findings. In future, well-designed studies should also
be necessary to clarify whether the change of NETs bio-
markers is a cause or consequence of thrombosis by col-
lecting blood samples before and after thrombosis.
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