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Abstract 

Neutrophil extracellular traps (NETs) may be associated with the development of thrombosis. Experimental studies 
have confirmed the presence of NETs in thrombi specimens and potential role of NETs in the mechanisms of throm-
bosis. Clinical studies also have demonstrated significant changes in the levels of serum or plasma NETs biomark-
ers, such as citrullinated histones, myeloperoxidase, neutrophil elastase, nucleosomes, DNA, and their complexes in 
patients with thrombosis. This paper aims to comprehensively review the currently available evidence regarding the 
change in the levels of NETs biomarkers in patients with thrombosis, summarize the role of NETs and its biomarkers in 
the development and prognostic assessment of venous thromboembolism, coronary artery diseases, ischemic stroke, 
cancer-associated thromboembolism, and coronavirus disease 2019-associated thromboembolism, explore the 
potential therapeutic implications of NETs, and further discuss the shortcomings of existing NETs biomarkers in serum 
and plasma and their detection methods.
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Introduction
Thrombosis, which refers to the formation of blood 
clots in arterial and venous vessels, is a consequence of 
inherited or acquired imbalance of procoagulant, anti-
coagulant, and fibrinolytic factors [1], and results in 
high morbidity and mortality [2, 3]. Knowledge regard-
ing underlying mechanisms of thrombosis is necessary 
to improve its management strategy. Traditionally, it is 
thought that thrombus should be formed by the interac-
tion of platelets, fibrin, and red blood cells. Neutrophils 
are the first-line defense against invading pathogens 
[4]. Recently, it has been recognized that the release of 

neutrophil extracellular traps (NETs) may contribute 
to the development of thrombosis [5–8]. NETs release 
is caused by stimulated neutrophils which form web-
like structures mainly composed of extracellular DNA, 
histones, and granular proteins, such as neutrophil 
elastase (NE), myeloperoxidase (MPO), and calprotec-
tin, etc [9, 10]. The current review paper primarily aims 
to summarize the role of NETs and its biomarkers in 
the development and prognostic assessment of venous 
thromboembolism (VTE), coronary artery diseases 
(CAD), ischemic stroke (IS), cancer-associated throm-
boembolism, and coronavirus disease 2019 (COVID-
19)-associated thromboembolism, explore the potential 
therapeutic implications of NETs, and further discuss the 
shortcomings of existing NETs biomarkers in serum and 
plasma and their detection methods.

Mechanisms of NETs formation
NETs formation, a unique form of cell death process 
[11], release decondensed chromatin and granular 
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proteins with nuclear materials [12]. Until now, there 
are two potential mechanisms of NETs formation [13]. 
The first mechanism is lytic-NETs formation, which 
can be induced by phorbol myristate acetate or choles-
terol crystal. Peptidyl arginine deiminase 4 (PAD4) may 
be activated by reactive oxygen species (ROS) [13–15], 
which can be generated by nicotinamide adenine dinu-
cleotide phosphate (NADPH) or mitochondria [16, 17], 
or calcium ionophore [18], thereby leading to the cit-
rullination of arginine residues of histones [18]. Nota-
bly, gasdermin D is required for ROS generation [19]. 
Meanwhile, MPO and NE can be translocated by ROS 
into the nucleus [20]. Subsequently, neutrophils exhibit 
rapid disassembly of the actin cytoskeleton, followed by 
shedding of plasma membrane microvesicles, disassem-
bly and remodeling of the microtubule and vimentin 

cytoskeletons, endoplasmic reticulum vesiculation, 
chromatin decondensation and nuclear rounding, and 
progressive permeabilization of plasma membrane and 
nuclear envelope [21]. Then, protein kinase C α-mediated 
lamin B phosphorylation drives nuclear envelope rup-
ture to release chromatin [22]. Finally, NETs are released 
after plasma membrane rupture [21] (Fig. 1). The second 
mechanism is non-lytic NETs formation, which can be 
induced by certain bacteria, such as E. coli, S aureus, or 
Candida albicans, through the activation of neutrophils 
mediated by Toll-like receptors (TLRs) or complement 
receptors [23], independent of NADPH oxidase activa-
tion. By this way, neutrophils are still alive and preserve 
their functions to move and phagocytose to some extent 
[23]. Besides, autophagy may provide another insight into 
the mechanisms of NETs formation [24, 25]. Collectively, 

Fig. 1 NETs formation and thrombosis Abbreviations: H3Cit, Citrullinated histone H3; MPO, Myeloperoxidase; NADPH, Nicotinamide adenine 
dinucleotide phosphate; NE, Neutrophil elastase; NETs, Neutrophil extracellular traps; PAD4, Peptidyl arginine deiminase 4; ROS, Reactive oxygen 
species
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some biomarkers involved in the NETs formation should 
include independent extracellular DNA, proteins derived 
from neutrophils (i.e., MPO and NE), proteins required 
for NETs formation (i.e., PAD4 and citrullinated his-
tones), and their complexes.

NETs promote thrombosis
NETs may contribute to the development of thrombo-
sis by forming a “scaffold”, which induces platelets adhe-
sion, activation, and aggregation, recruits red blood 
cells, and maintains the stability of thrombus together 
with fibronectin, fibrinogen, and von Willebrand factor 
(VWF) [26]. The interaction of neutrophils with platelets 
depends on the adhesion molecules, such as P-selectin, 
P-selectin glycoprotein ligand 1, glycoprotein Ib, and 
macrophage-1 antigen [27]. Additionally, platelet-derived 
high mobility group box 1 (HMGB1) mediates both NETs 
formation and thrombosis [28, 29]. HMGB1 can interact 
with TLR4 [30], enabling neutrophils to release NETs. 
Furthermore, HMGB1 can promote early recruitment 
of platelets [31], thereby enhancing the pro-thrombotic 
effect and promoting the development of thrombosis.

The components of NETs themselves can also affect the 
formation of thrombosis. Histones are responsible for tis-
sue factor activity [32], platelet activation via mediating 
TLR2 and TLR4 [33], platelet aggregation via inducing 
calcium influx and fibrinogen recruitment [34], reduc-
tion of thrombomodulin-dependent protein C activation 
[35], and release of activated thrombin [36, 37]. Further-
more, histone 4 promotes prothrombin autoactivation to 
thrombin [38]. DNA, which is deemed as another com-
ponent of NETs, is reported to shorten clotting time, pro-
mote FXII activation and FXIa generation, and amplify 
tissue factor-initiated thrombin generation [12]. Both 
histones and DNA can increase the median fiber diam-
eter of plasma clots [39]. PAD4 can accelerate the devel-
opment of thrombosis via protecting VWF-platelets 
string from the cleavage of endogenous  a disintegrin and 
metalloproteinase with thrombospondin type-1 motif-13 
(ADAMTS13) [40]. Other components of NETs, includ-
ing NE, cathepsin G, and nucleosomes, are responsible 
for promoting coagulation and intravascular thrombus 
growth through enhancing intrinsic and extrinsic coagu-
lation pathways [41].

Collectively, NETs can affect the development of 
thrombosis via multiple ways. Additional evidence 
regarding how NETs promote thrombosis is also 
emerging.

NETs biomarkers and VTE
VTE primarily comprises of deep vein thrombosis 
(DVT) and pulmonary embolism (PE). Experimen-
tal and clinical studies have confirmed the presence of 

NETs biomarkers in VTE specimens. Extracellular DNA 
was in close proximity to neutrophils, together with 
positive staining of MPO, NE, and histones by immu-
nostaining assay after induction of venous thrombosis 
[42]. Additionally, citrullinated histone H3 (H3Cit) was 
observed in the red [43] or fresh red fibrin-rich parts 
of thrombi [44]. In baboons with iliac vein thrombo-
sis, dotted and diffuse staining of DNA and positive 
staining of DNA-histone could be observed in thrombi 
[26]. Human venous thrombi from surgical samples or 
autopsies revealed the colocalization of DNA, DNA-
histone complexes, and MPO [45], that of DNA, MPO, 
CD11b, and H3Cit [46], and that of DNA, MPO, H3Cit, 
pan-Cit, and PAD4 in organizing thrombi [46].

NETs biomarkers have been quantitatively evaluated 
in VTE patients in several clinical studies [44, 47–58] 
(Table 1). The levels of plasma DNA [53], H3Cit-DNA 
[58], and NE [58] were elevated in VTE patients. The 
level of plasma MPO had a good diagnostic perfor-
mance of VTE [59], while the diagnostic accuracy 
of H3Cit-DNA and NE was not superior to that of 
D-dimer [58]. On the other hand, the expression of 
NETs biomarkers may depend on the locations of VTE. 
The levels of plasma DNA and nucleosomes were sig-
nificantly different between elderly patients with PE 
and DVT [50]. Besides, the levels of plasma DNA and 
calprotectin were higher in patients with splanchnic 
vein thrombosis (SVT) than those with DVT, whereas 
the level of MPO was much higher in patients with 
DVT of the lower limbs than those with SVT [52]. Clin-
ical evidence regarding NETs biomarkers in patients 
with VTE at various locations are separately reviewed 
in the following paragraphs.

DVT
In a case–control study, the levels of plasma NE-α1-
antitrypsin complexes and nucleosomes ≥ 80th percen-
tile (odds ratio [OR] = 3.0 and OR = 2.4) significantly 
increased the risk of symptomatic DVT regardless of 
adjustment for potential confounders [49]. By contrast, 
another study did not show any significant difference 
in the levels of serum NE and nucleosomes between 
patients with DVT and healthy controls [51]. Thus, more 
evidence is necessary to clarify the association of NE and 
nucleosomes with DVT. Notably, among the currently 
published studies, the levels of serum MPO, MPO-DNA, 
and DNA were significantly higher in patients with DVT 
than those without DVT or healthy controls [48, 51, 52]. 
Furthermore, the levels of plasma H3Cit and DNA can be 
used for the diagnosis of DVT in patients with traumatic 
fractures [55].
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PE
A recent study found that the levels of plasma neutro-
phils, MPO, and DNA, rather than H3Cit, were signifi-
cantly elevated in patients with chronic thromboembolic 
pulmonary hypertension as compared with healthy con-
trols [44]. By contrast, another study demonstrated that 
the level of plasma H3Cit was almost fivefold higher in 
patients with acute PE than healthy controls [54]. Such 
a difference in the expression of plasma H3Cit between 
the two studies might be attributed to the stage of dis-
ease (chronic versus acute). On the other hand, NETs 
biomarkers can also reflect the severity of PE. The levels 
of plasma DNA deriving from mitochondria and nucleus 
were higher in patients with massive PE than those with 
sub-massive PE [47]. Notably, it should be acknowl-
edged that this change of NETs biomarkers might also be 
derived from damaged tissues during severe PE. Addi-
tionally, higher level of plasma DNA was independently 
associated with increased PE-related mortality [50] and 
all-cause mortality [47, 50], but not the recurrence of 
VTE during a 3-year follow-up period [50]. Similarly, the 
level of plasma H3Cit could also predict acute PE-related 
death [54].

PVT
A European prospective cohort study did not find any 
significant relationship between the levels of plasma 
MPO-DNA and DNA at baseline and the development of 
portal vein thrombosis (PVT) in patients with liver cir-
rhosis during a mean follow-up period of 48 months [56]. 
However, it should be noted that a majority of patients 
included in this cohort study had Child–Pugh class A, 
suggesting that they had well-preserved hepatic function 
[60]. By comparison, a Chinese cross-sectional study, 
in which a majority of cirrhotic patients included had 
Child–Pugh class B + C (69.4%), demonstrated that the 
levels of plasma H3Cit, NE, and MPO were significantly 
higher in patients with PVT than those without PVT, 
and positively correlated with thrombin-antithrombin 
(TAT) complex and FX, which are well-known markers 
for hypercoagulability [57]. Such a controversy should 
be further clarified in cirrhotic patients according to the 
severity of liver dysfunction.

NETs biomarkers and CAD
CAD encompasses stable angina, unstable angina, myo-
cardial infarction (MI), and sudden cardiac death due to 
the occurrence of atherosclerosis or thrombosis in coro-
nary arteries [61]. NETs formation has been detected 
by positive staining of Ly6G, DNA, MPO, and H3Cit in 
mice’s atherosclerotic lesions [62–64]. Immunostaining 
assay found the colocalization of CD177, NE, and DNA 
in patients’ carotid plaques [65]. By immunostaining of 

patients’ carotid and coronary plaques, another study 
also demonstrated that CD66b, NE, H4Cit, and DNA 
were in contact with the luminal surface of erosion-prone 
plaques and localized within rupture-prone plaques 
[66]. Additionally, the colocalization of histones, NE, 
and MPO was commonly observed in fresh and lytic 
coronary thrombi from MI patients, rather than organ-
ized coronary thrombi [67]. The other colocalizations 
of MPO, H3Cit, and DNA [68] and DNA, DNA-histone 
complexes, and MPO [45] were also detected in coronary 
thrombi.

Some clinical studies have been performed to evalu-
ate the importance of NETs biomarkers in CAD patients 
[69–80] (Table 2). It seems that NETs biomarkers could 
predict the disease severity, hypercoagulability, and 
worse clinical outcomes in CAD patients. The levels of 
plasma MPO-DNA, nucleosomes, and DNA were sig-
nificantly elevated in patients with more severe CAD, 
and could predict the number of diseased coronary 
artery segments and the incidence of major adverse car-
diac events (MACE). Among them, only higher level of 
plasma nucleosomes was an independent risk factor for 
severe coronary stenosis, and only higher level of plasma 
DNA was independently associated with prothrombotic 
state [71]. Another large-scale study involving 1001 CAD 
patients found that higher level of serum DNA was signif-
icantly associated with hypercoagulability and predicted 
worse clinical outcomes [73]. Both studies suggested that 
DNA could predict hypercoagulability, and other NETs 
biomarkers, such as nucleosomes and MPO-DNA, might 
be useful to predict CAD progression.

MI
MI is primarily associated with plaque rupture and 
erosion [81]. Until now, the role of NETs biomarkers 
in patients with MI has been more comprehensively 
explored as compared to those with other types of CAD. 
The level of plasma DNA was higher in patients with 
acute MI (AMI) than healthy controls [69] and stable 
angina [72], and positively correlated with Gensini and 
GRACE scores [72] and peak levels of creatine kinase 
(CK) and troponin-T [70]. Particularly, in ST elevation 
MI (STEMI) patients admitted for percutaneous coro-
nary intervention (PCI), the levels of plasma H3Cit [77], 
MPO-DNA [76, 78], and DNA [76–78] were significantly 
higher in infarct-related coronary arteries than peripheral 
arteries [76, 77] or in anterior MI than other locations of 
infarction [78]. The levels of serum MPO-DNA and DNA 
became the highest in STEMI patients before PCI, and 
decreased after PCI [74]. Both H3Cit and DNA levels 
positively correlated with infarct size [74, 77], and high 
level of DNA was usually associated with increased risk 
of developing lower left ventricular ejection fraction [74], 
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adverse clinical events [76], and all-cause mortality [78]. 
Importantly, DNA level had a predictive value for in-hos-
pital mortality in STEMI patients, which was equivalent 
to that of troponin I [75], troponin T, and CK-MB [76]. 
Higher level of serum DNA is also associated with hyper-
coagulability indicated by elevated D-dimer and pro-
thrombin fragment 1 + 2 levels in STEMI patients [78]. A 
composite score of NETs biomarkers and platelet count 
showed the most favorable predictive value for MACE in 
non-ST and STEMI patients [80].

NETs biomarkers and IS
IS can be caused by cardiac embolism, atherosclerosis of 
cerebral circulation, and occlusion of small vessels result-
ing in high mortality and disability worldwide [82]. In 
a rat model, a significant increase in the level of serum 
DNA was observed at 24  h after the onset of IS. DNA 
level was positively associated with the total infarct vol-
ume, brain edema, and neurologic severity score (cor-
relation coefficient = 0.78, 0.91, and 0.73, respectively) 
[83]. Abundant neutrophils and NETs were also found 
in thrombi from patients with acute IS (AIS) by the colo-
calization of CD66b, H3Cit, and DNA, that of H3Cit and 
NE [84], or that of H4Cit, MPO, and DNA [85]. Mean-
while, neutrophils and H3Cit were especially higher in 
older thrombi than fresh thrombi by calculating the area 
of H3Cit positive staining [84].

NETs biomarkers have been explored in AIS patients 
(Table 3) [75, 86, 87]. In a prospective cohort study, the 
level of plasma DNA was elevated by threefold in AIS 
patients compared with non-AIS patients, and exhibited 
a positive correlation with infarct size [86]. Besides, the 
levels of plasma nucleosomes and H3Cit were also ele-
vated in AIS patients with a history of atrial fibrillation, 
NIHSS score > 14 at onset, NIHSS score ≥ 6 at discharge, 
and mRankin scale score > 2 at discharge [87]. The high-
est quartile level of plasma H3Cit was independently 
associated with atrial fibrillation (OR = 6.7) and all-cause 
mortality (OR = 7.1) during one-year follow-up period 
[87]. Furthermore, the levels of plasma H3Cit, MPO, 
and DNA were significantly increased in IS patients with 
elevated hypersensitive troponin T levels as compared to 
those with normal hypersensitive troponin T levels [88].

NETs biomarkers and cancer‑associated thromboembolism
Thromboembolism is one of the most common comor-
bidities associated with cancer and also a leading cause 
of death for cancer patients [89, 90]. NETs formation has 
been detected in animal models of cancer and patients 
with cancer-associated thrombosis. Increased levels of 
plasma H3Cit, NE, and DNA were found in mice bear-
ing pancreatic tumors [91]. Additionally, in murine mod-
els of chronic myelogenous leukemia and breast and 

lung cancers, NETs formation was implied by the colo-
calization of DNA, fibrin, and VWF in thrombi as well 
as web-like patterns [92]. In patients with gastric cancer, 
the levels of NETs biomarkers released by neutrophils 
cultured in  vitro were positively associated with TAT 
complex and D-dimer levels, indicating that NETs might 
contribute to hypercoagulability [93]. Besides, in patients 
with cancer, NETs formation was indicated by the colo-
calization of H3Cit and DNA in cerebral, coronary, and 
pulmonary microthrombi [88].

Recently, clinical studies have focused on the associa-
tion between NETs biomarkers and cancer-associated 
thromboembolism[88, 94–98] (Table 4).

VTE
The level of plasma nucleosomes was an independent risk 
factor for DVT, irrespective of malignancy [49]. However, 
in a large-scale study of 946 patients with malignancy, 
higher levels of plasma nucleosomes and DNA could 
only predict a higher risk of VTE, including PE, DVT, 
and SVT, during the first 6-month follow-up period, 
but only higher level of plasma H3Cit was an independ-
ent predictor of VTE during the overall follow-up period 
and comparable to D-dimer, soluble P-selectin, FVIII, 
and prothrombin fragment 1 + 2 for predicting VTE. 
More importantly, H3Cit significantly increased the risk 
of VTE in patients with pancreatic and lung cancer, but 
not those with cancers in other sites [94]. The levels of 
plasma DNA-histone and DNA, rather than NE, were 
significantly higher in hepatocellular carcinoma patients 
with PVT than those without PVT[97]. In patients with 
colorectal cancer, the levels of plasma MPO-DNA and 
DNA also positively correlated with the levels of plasma 
TAT complex and D-dimer, suggesting that NETs may 
contribute to coagulation activation and increased risk of 
VTE [99].

Arterial thrombosis
The levels of plasma nucleosomes and DNA were sig-
nificantly elevated in cancer-related stroke patients com-
pared with healthy-, cancer-, and stroke-controls. High 
plasma DNA level was independently associated with 
the risk of cancer-related stroke [95]. Furthermore, the 
levels of plasma H3Cit, MPO, and DNA were signifi-
cantly elevated in IS patients with cancer as compared 
to those without [88]. Conversely, a prospective obser-
vational cohort study revealed that the levels of plasma 
H3Cit, DNA, and nucleosomes at baseline could not 
predict a composite outcome of MI, IS, and peripheral 
arterial occlusion in patients with malignancy, although 
H3Cit and DNA significantly increased the risk of 
death [96]. The level of plasma MPO-DNA was higher 
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in myeloproliferative neoplasms (MPNs) patients with 
a history of arterial and venous thrombosis than those 
without [98].

NETs biomarkers and COVID‑19‑associated 
thromboembolism
Thromboembolism is common in COVID-19 patients 
[100] and independently associated with hospitalized 
mortality [101]. Immunostaining of lung, kidney, and 
heart tissues of COVID-19 patients revealed positive 
staining of H3Cit, MPO-DNA, NE, and DNA [102, 103]. 
Additionally, H3Cit, MPO, and DNA were colocalized 
with platelet and fibrin in blood vessels, indicating the 
involvement of NETs formation in the development of 
immunothrombosis [104].

The levels of plasma MPO-DNA and H3Cit were sig-
nificantly higher in COVID-19 patients than healthy con-
trols [105], and the level of plasma MPO-DNA positively 
correlated with the severity of COVID-19 [104]. Further-
more, the levels of plasma H3Cit-DNA, DNA, and NE 
correlated with those of widely recognized plasma mark-
ers for coagulation and fibrinolysis (i.e., D-dimer, TAT 
complex, and plasmin-antiplasmin) and endothelial acti-
vation and damage (i.e., VWF and ADAMTS13) [106]. 
The levels of plasma H3Cit and MPO-DNA were signifi-
cantly higher in COVID-19 patients with VTE than those 
without. The areas under the curve of H3Cit and MPO-
DNA for predicting VTE were 0.791 and 0.769, respec-
tively [105]. The levels of serum H3Cit, MPO-DNA, 
DNA, and calprotectin were still higher in COVID-19 
patients with both arterial thrombosis and VTE than 
those without thrombotic events, despite prophylactic 

anticoagulation was prescribed at the time of diagnosis 
of thrombotic events [107]. But such an association was 
not confirmed by a prospective cohort study, which dem-
onstrated that the baseline level of plasma MPO-DNA 
could not predict the development of thrombosis [108] 
(Table 5).

Potential therapeutic implications
NETs may be a potential therapeutic target for the man-
agement of thrombosis. First, DNase I can dissolve NETs 
structure, thereby compromising the formation of arte-
rial thrombosis [109, 110], and reducing the weight of 
venous thrombus [42, 91] in mice. Ex  vivo experiments 
measured the change of thrombus weight after throm-
bolysis of human PE, CAD, and IS thrombi and showed 
that either DNase I or tissue plasminogen activator (tPA) 
alone could induce thrombolysis [85], and a combination 
of DNase I and tPA further accelerated thrombolysis [45, 
84, 85, 111]. This phenomenon may be attributed to the 
capacity of tPA to remove fibrin and that of DNase I to 
remove the "scaffold" of NETs connecting red blood cells 
and platelets [26]. Second, heparin, a frequently used 
anticoagulant, can remove histones in chromatin, then 
dismantle NETs [26]. Third, Cl-amidine, a PAD inhibitor, 
shows its ability to prevent thrombosis by inhibiting the 
NETs formation. Treatment with Cl-amidine can reduce 
the area of atherosclerotic lesion, prolong the time to 
carotid artery thrombosis in atherosclerosis mice [62], 
maintain the stability of cerebral perfusion, reduce the 
size of the ischemic lesion, and prevent from the devel-
opment of thrombosis in IS mice [112]. GSK484, another 
potent and selective inhibitor of PAD4, strongly inhibits 

Table 3 Studies evaluating NETs biomarkers in IS

Abbreviations: ACS Acute coronary syndrome, AIS Acute ischemic stroke, AU Absorbance unit, H3Cit Citrullinated histone H3, ELISA Enzyme-linked immunosorbent 
assay, HC Healthy control, IS Ischemic stroke, Min Minute, NA Not available, NETs Neutrophil extracellular traps, qPCR Quantitative polymerase chain reaction

First author/
year

Study design Included 
patients

Groups (No. 
patients)

Samples 
processing

NETs 
biomarkers

Analytical 
methods 
for NETs 
biomarkers

Detailed values

O’Connell et al
(2017) [86]

Case–control Patients experi-
encing AIS and 
those identified 
as stroke mimics

AIS (n = 43) vs. 
Negative AIS 
(n = 20)

Plasma, 2000 × g, 
10 min and 
10,000 × g, 
10 min

DNA qPCR NA

Vallés et al
(2017) [87]

Case–control and 
cohort

Patients with 
AIS during the 
acute phase of 
brain ischemia 
and suffering 
stroke < 24 h 
before admission

AIS (n = 243) vs. 
HC (n = 27)

Plasma, 22 °C, 
2500 × g, 10 min

H3Cit ELISA 0.080 vs. 0.039 AU

Nucleosomes ELISA 0.329 vs. 0.209 AU

DNA SytoxGreen 
fluorimetry

432.11 vs. 
324.2 ng/mL

Lim et al
(2020) [75]

Case–control and 
cohort

Patients with 
newly diagnosed 
ACS or AIS

ACS (n = 37) vs. 
AIS (n = 58) vs. 
HC (n = 25)

Plasma, 1600 × g, 
15 min

DNA-histone ELISA 19.73 vs. 13.71 vs. 
14.32 mU

DNA PicoGreen fluor-
imetry

743.28 vs. 524.22 
vs. 216.48 ng/mL
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the NETs formation and thrombus deposition in mouse 
lungs [113]. Forth, ruxolitinib, a JAK1/JAK2 inhibitor, is 
a second-line drug for the treatment of MPN [114]. It can 
also abrogate the NETs formation and decrease the rate 
of stenosis-induced venous thrombosis in JAK2V617F-
driven MPN mice [115]. Notably, all the above-men-
tioned evidence comes from animal and ex  vivo 
experiments, and clinical studies of NETs as a therapeutic 
target for thrombosis have not been carried out yet.

Limitations of current NETs biomarkers
Circulating NETs biomarkers include serum or plasma 
PAD4, H3Cit, MPO, NE, nucleosomes, or DNA, but 
their specificity of reflecting NETs formation remains 
uncertain. First, among the published studies, NETs 
biomarkers have been measured in human serum and 
plasma samples. However, it should be noted that neither 

serum nor plasma is the exact position of NETs forma-
tion. Second, PAD4 is not only involved in citrullination 
of histones during NETs formation, but also partici-
pates in other physiological processes, such as activation 
of vascular smooth muscle cells [116] and regulation 
of hematopoietic stem cell proliferation [117]. On the 
other hand, Cl-amidine, which has been widely used for 
the inhibition of PAD4 in NETs studies, is not a PAD4-
specific inhibitor, but a pan-PAD inhibitor [118]. Third, 
citrullinated histones have been also observed during 
apoptosis [119]. Furthermore, in the absence of NETs-
dependent stimulation, Western blot assay also shows 
positive expression of citrullinated histones in liver tis-
sues [120]. Fourth, NE may be unnecessary for NETs 
formation, because NE deficiency or inhibition does not 
prevent NETs formation [121]. Fifth, MPO, which plays 
an important role in antimicrobial responses, is also 

Table 4 Studies evaluating NETs biomarkers in cancer-associated thromboembolism

Abbreviations: ATE Arterial thromboembolism, AU Absorbance unit, ELISA Enzyme-linked immunosorbent assay, H3Cit Citrullinated histone H3, HC Healthy control, 
HCC Hepatocellular carcinoma, IS Ischemic stroke, Min Minute, MPN Myeloproliferative neoplasms, MPO Myeloperoxidase, NA Not available, NE Neutrophil elastase, 
NETs Neutrophil extracellular traps, OD Optical density, PVT Portal vein thrombosis, VTE Venous thromboembolism

First author/
year

Study design Included 
patients

Groups (No. 
patients)

Samples 
processing

NETs 
biomarkers

Analytical 
methods 
for NETs 
biomarkers

Detailed values

Thålin et al
(2016) [88]

Case–control Patients with IS Cancers (n = 8) 
vs. No cancers 
(n = 23)

Plasma, 2000 × g, 
20 min

H3Cit ELISA 0.22 vs. 0.07 OD

MPO ELISA 74.1 vs. 37.8 ng/mL

DNA PicoGreen fluor-
imetry

504.0 vs. 407.9 ng/
mL

Mauracher et al
(2018) [94]

Cohort Adult patients 
with newly 
diagnosed malig-
nancy or progres-
sion of disease 
after remission

VTE (n = 89) vs. 
No VTE (n = 857)

Plasma, 3000 × g, 
10 min

H3Cit ELISA 52.4 vs. 24.1 ng/mL

Nucleosomes ELISA 1.3 vs. 1.2 MoM

DNA PicoGreen fluor-
imetry

384.5 vs. 355.8 ng/
mL

Bang et al
(2019) [95]

Case–control Patients with 
active cancer

Cancer-stroke 
(n = 38) vs. 
Stroke-control 
(n = 40) vs. 
Cancer-control 
(n = 27) vs. HC 
(n = 33)

Plasma, 2000 × g, 
15 min

Nucleosomes ELISA 0.379 vs. 0.189 vs. 
0.251 vs. 0.194 OD

DNA PicoGreen fluor-
imetry

40.35 vs. 34.38 vs. 
34.52 vs. 30.48 mg/
mL

Grilz et al
(2019) [96]

Cohort Adult patients 
with newly 
diagnosed 
malignancy or 
a progression 
of disease after 
complete or par-
tial remission

ATE (n = 22) vs. 
No ATE (n = 935)

Plasma, 3000 × g, 
10 min

H3Cit ELISA NA

Nucleosomes ELISA NA

DNA PicoGreen fluor-
imetry

NA

Guy et al
(2019) [98]

Case–control Patients with 
MPN

Thrombosis 
(n = 16) vs. No 
thrombosis 
(n = 15)

Plasma, 2400 × g, 
15 min

DNA PicoGreen fluor-
imetry

NA

MPO-DNA ELISA NA

Seo et al
(2019) [97]

Case–control Patients with HCC PVT (n = 77) vs. 
No PVT (n = 100)

Plasma, 1550 × g, 
15 min

DNA-histone ELISA 159 vs. 83 AU

NE ELISA NA

DNA PicoGreen fluor-
imetry

142.1 vs. 127.0 ng/
mL
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expressed in monocytes and macrophages [122]. Sixth, 
nucleosomes may also originate from lymphocytes, red 
blood cells, and tumor cells, etc. [123]. Last, DNA can be 
either cell-free or bound with histones or other proteins 
in plasma and serum. Extracellular DNA is often consid-
ered a NETs biomarker, but can also be released during 
other cell death processes (i.e., apoptosis, necrosis, and 
pyroptosis) and active secretion (i.e., phagocytosis and 
egestion of DNA) [124]. Therefore, considering low spec-
ificity of a single NETs biomarker, it may be more reliable 
to combine two or more biomarkers for reflecting NETs 
formation.

Quantitative analyses of NETs biomarkers are clini-
cally more useful and valuable. H3Cit, MPO-DNA, NE, 
and nucleosomes are often measured by enzyme-linked 
immunosorbent assay (ELISA), and DNA by quantitative 
polymerase chain reaction or fluorimetry assays. How-
ever, the type of samples, preanalytical sample prepara-
tion, and analytical methods used for measuring NETs 
biomarkers are heterogeneous among the published 
studies. First, plasma was employed for measuring NETs 
biomarkers in some studies, but serum in others. How-
ever, DNA levels are comparable in both plasma and 
serum of the same individuals [51]. Second, the methods 
on sample preparation, including the time from blood 
collection to sample processing, processing temperature, 
and centrifugal force, time, and frequency, often vary by 
study, which might influence experimental results. Pre-
scriptive methods will helpfully improve the quality of 
samples and minimize preanalytical errors associated 
with sample preparation. Third, antibodies, assays, detec-
tion instruments, and manufacturers for detecting the 
same NETs biomarker are often diverse, thereby leading 

to the heterogeneity in experimental results among stud-
ies. Notably, the specificity of ELISA for the detection 
of some NETs biomarkers, such as the measurement of 
MPO-DNA complexes in human plasma, is question-
able [125]. Therefore, robust, accurate, reproducible, 
well-standardized, and highly specific assays for measur-
ing NETs biomarkers are required before drawing solid 
conclusions.

Conclusion
Taken together, the effect of NETs formation on throm-
bosis is supported by a growing number of experimen-
tal and clinical studies, in which NETs biomarkers have 
been qualitatively and quantitatively measured. Particu-
larly, H3Cit, MPO, MPO-DNA, NE, nucleosomes, and 
DNA, which are deemed as NETs biomarkers, have been 
evaluated in VTE, CAD, IS, cancer-associated thrombo-
embolism, and COVID-19 associated thromboembo-
lism (Fig.  2). Collectively, circulating NETs biomarkers 
seem to be associated with the presence and severity of 
thrombosis and correlate with hypercoagulability, but 
it remains unclear whether they can exactly reflect the 
NETs formation related to thrombosis, especially in 
patients with cancers and COVID-19. Instead of case–
control or cross-sectional studies comparing between 
patients with thrombotic event and healthy population, 
cohort studies, where the development of a thrombotic 
event has been observed in the same population during 
follow up, should be more conductive in drawing more 
accurate and clinically relevant conclusions regarding 
diagnostic performance and predictive ability of NETs 
biomarkers. Routine detection of NETs biomarkers in 
patients with thrombosis cannot be considered until 

Table 5 Studies evaluating NETs biomarkers in COVID-19 associated thromboembolism

Abbreviations: COVID-19 Coronavirus disease 2019, ELISA Enzyme-linked immunosorbent assay, H3Cit Citrullinated histone H3, Min Minute, MPO Myeloperoxidase, NA 
Not available, NETs Neutrophil extracellular traps, VTE Venous thromboembolism

First author/
year

Study design Included patients Groups (No. 
patients)

Samples 
processing

NETs biomarkers Analytical 
methods for 
NETs biomarkers

Detailed 
values

Ouwendijk et al
(2021) [108]

Case–control and 
cohort

Critically ill 
patients
with COVID-19

Thrombosis 
(n = 44) vs. No 
thrombosis 
(n = 33) vs. HC 
(n = 7)

Plasma MPO-DNA ELISA NA

Petito et al
(2021) [105]

Case–control and 
cohort

Hospitalized 
patients with 
COVID-19

VTE (n = 8) vs. No 
VTE (n = 27) vs. HC 
(n = 31)

Plasma, 4000 × g, 
10 min

H3Cit ELISA NA

MPO-DNA ELISA NA

Zuo et al
(2021) [107]

Case–control Hospitalized 
patients with 
COVID-19 and 
thrombosis

Thrombosis 
(n = 11) vs. No 
thrombosis 
(n = 33)

Serum Calprotectin ELISA NA

MPO-DNA ELISA NA

H3Cit ELISA NA

DNA PicoGreen fluor-
imetry

NA
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more robust evidence has been produced. Notably, it 
should be acknowledged that existing NETs biomark-
ers in serum and plasma and their detection methods 
are unsatisfactory. Besides, concomitant infection or 
inflammation, use of anticoagulants, antiplatelet drugs, 
and anti-cancer therapies, and effect of invasive or sur-
gical procedures may influence the reliability of the cur-
rent findings. In future, well-designed studies should also 
be necessary to clarify whether the change of NETs bio-
markers is a cause or consequence of thrombosis by col-
lecting blood samples before and after thrombosis.
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