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Abstract 

Cardiocerebrovascular diseases (CVDs) are the leading cause of death worldwide, consuming huge healthcare 
budget. For CVD patients, the prompt assessment and appropriate administration is the crux to save life and improve 
prognosis. Thrombolytic therapy, as a non-invasive approach to achieve recanalization, is the basic component 
of CVD treatment. Still, there are risks that limits its application. The objective of this review is to give an introduc-
tion on the utilization of thrombolytic therapy in cardiocerebrovascular blockage diseases, including coronary heart 
disease and ischemic stroke, and to review the development in risk assessment of thrombolytic therapy, comparing 
the performance of traditional scales and novel artificial intelligence-based risk assessment models.
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Introduction
Cardiocerebrovascular diseases (CVDs) are pathological 
conditions involving the cardiovascular system, which 
are the leading cause of death worldwide, and more than 
80% CVD-caused deaths are due to CHD and stroke [1]. 
According to data from WHO, in 2019, about 17.9 mil-
lion people died from CVDs, accounting for 32% of the 
global total. In the United States, the main type of CVDs 
was CHD, with a proportion of 41.3%, followed by stroke 
(17.2%) [2]. CHDs are the stenosis or obstruction of the 
coronary artery, leading to myocardial ischemia, hypoxia 
and even necrosis. One of the most important charac-
teristics of CHD is atherosclerosis. (The pathogenesis of 
atherosclerosis is shown in Additional file 1). According 

to their stability, atheromatous plaques are divided into 
stable plaques and unstable plaques. When the unstable 
plaque ruptures or erodes, subendothelial collagen, lipid 
core, and procoagulants like tissue factor and von Wille-
brand factor are exposed to the blood circulation, which 
rapidly promotes platelets to adhere to the vessel wall 
and subsequently aggregate, contributing to acute throm-
bosis. Then the coronary artery is completely blocked, 
and later the ischemia and hypoxia of the myocardium 
in the corresponding area emerge, resulting in myocar-
dial infarction characterized by ST-segment elevation 
(STEMI), which is a serious type of acute coronary syn-
drome (ACS).

Another fatal type of CVD, stroke, is divided into 
hemorrhagic stroke and ischemic stroke based on its 
pathogenesis. Ischemic stroke is the main type of stroke, 
accounting for 85% of strokes. It is defined as a result of 
thrombosis or embolism that blocks cerebral vessels in a 
specific area of the brain, causing a sudden loss of blood 
flow to the corresponding area of the brain and leading 
to neurological dysfunction [3]. Unlike in situ thrombosis 
in ACS, plaque ruptures in extracranial cervical arteries 
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mostly result in distal embolization of the thrombus to 
the brain (arterial embolism), while the consequences of 
intracranial atherosclerotic plaque rupture are similar to 
those of ACS, namely bringing about in situ vessel occlu-
sion [4]. Atherosclerosis and the build-up of plaque con-
strict blood vessels and reduce blood flow to the brain 
region, leading to severe stress and cell death due to 
hypoxia in the ischemic region.

In conclusion, thrombosis is the common pathogenetic 
process of myocardial infarction and ischemic stroke. 
Thus, thrombolysis plays a significant role in the treat-
ment of these two diseases.

Thrombolytic therapy
The application of thrombolytic therapy in CVDs
Thrombolytic therapy, or thrombolysis, is to use the 
thrombolytic agents (TAs) to destroy or dissolve the 
thrombi in vessels. It is applied in various thrombotic 
or embolic CVDs, ranging from venous thromboembo-
lism (VTE), acute ischemic stroke (AIS), acute myocar-
dial infarction (AMI), to prosthetic valve thrombosis 
(PVT) [5].

As the mechanism of AMI and AIS is the acute artery 
occlusion which leads to ischemic necrosis of the tissue 
in its supplying area, to achieve recanalization and rep-
erfusion as soon as possible is vital for avoiding irrevers-
ible damage and improving outcomes. Thrombolysis and 
interventional therapy, such as thrombectomy and stent 
implantation, are the two major approaches. For STEMI, 
though primary percutaneous coronary intervention 
(PCI) is a prior strategy [6, 7], it is hard to achieve, espe-
cially in regions with limited medical resources and 
emergency services, while it requires equipment for 
angiographic guidance and the evidence-based time-
frame is restricted. When early PCI is not feasible, the 
application of thrombolysis before being transferred to 
facilities where catheterization is available provides an 
opportunity for early reperfusion at the symptom onset. 
The TRANSFER-AMI study has shown that, among the 
1059 high-risk STEMI patients those who were treated 
with tenecteplase and then transferred for PCI within 
6 h have a lower occurrence of endpoint composited of 
death, reinfarction, recurrent ischemia, new or worsen-
ing congestive heart failure, or cardiogenic shock within 
30 days [8].

If PCI cannot be performed within the guideline-rec-
ommended timeframe, which is approximately 120 min, 
fibrinolytic drugs should be administered at full dose for 
patients under 75  years old, with the exclusion of con-
traindications [9]. The contraindications to thrombo-
lytic therapy include uncontrolled hypertension, prior 
intracranial hemorrhage, history of head trauma within 
3  months, intracranial surgery within 2  months, brain 

malignancy, cerebrovascular malformation, aortic dissec-
tion, active or recent bleeding, bleeding diatheses [5].

Thrombolytic agents
Thrombolytic agents are natural or artificial substances 
that contribute to the fibrinolytic process, catalyzing 
the conversion of plasminogen to plasmin, which can 
degrade the essential component of thrombus, fibrin, 
into fibrin degradation products (FDPs). Features of sev-
eral commonly used TAs are compared in Additional 
file 2 [10–25].

According to the time of discovery and characteris-
tics, TAs are divided into 3 generations. In addition, TAs 
can be categorized as either “fibrin specific” or “non-
fibrin specific”. The fibrin-specific TAs, including the 
second-and third-generation TAs, selectively activate 
the plasminogen that are bound to fibrin. Therefore, 
they pose a lower risk of complications attributed to sys-
temic fibrinolytic activation. The first-generation TAs 
are streptokinase (SK) and urokinase (UK). The second-
generation TAs, represented by recombinant tissue plas-
minogen activator (rt-PA) and single-chain urokinase 
(scu-PA), share common characteristics: They are to a 
certain extent fibrin specific but require large therapeu-
tic dose and continuous intravenous infusion due to the 
short half-life. Among the new candidates of third-gen-
eration TAs, tenecteplase and reteplase are the two TAs 
approved by FDA for clinical treatment. They have a pro-
longed half-life, which allows them to be administered as 
a bolus dose rather than an infusion. Several clinical trials 
including RAPID II [18], PAPID II [19] and INJECT [25] 
have demonstrated that compared with other TAs such 
as rt-PA and SK, reteplase achieved a higher coronary 
artery patency rate without increasing the risk of bleed-
ing or other adverse events.

The way of delivering TAs includes systematic delivery, 
Intracoronary (IC) thrombolysis, nanocarriers and so on. 
As a traditional way to deliver TAs, systematic delivery 
has the advantages of being convenient and affordable, 
while its limitations are non-specific bio-distribution and 
the risk of bleeding complications. IC thrombolysis is 
developed in 1990s as an adjunctive treatment to angio-
plasty, aimed at decreasing the risk of distal thromboem-
bolism [26]. Through the direct administration of TAs in 
coronary artery, site-specific TA concentrations can be 
reached at high levels with fewer doses, and therefore 
posing less danger of systematic hemorrhage. Nanocar-
rier is a novel approach of drug delivery, which is still 
under clinical investigation [27, 28]. It conjugates with 
TAs, then under the trigger of an internal or external 
stimulus the conjugation disassembles at the thrombus 
site, thereby the concentration of TAs is increased.
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Risk prediction
Clinical risks
As illustrated above, prompt treatment with fibrinolytic 
agents, such as alteplase, is an effective therapy for AIS 
[29] and STEMI [30], reducing mortality and improv-
ing recovery [30, 31]. However, it is associated with 
risks, which generally include in-hospital death (from 
any causes), recurrent occlusion, reperfusion injury, and 
immunologic and hemorrhagic complications.

Unsurprisingly, hemorrhage is the most common 
complication, since TAs may not only dissolve the pro-
tective blood clots, but lead to secondary hyperfibrinol-
ysis, hypofibrinogenemia, platelet dysfunction, and 
other hemostatic defects [32] as well. Depending on site 
and severity, hemorrhagic complications can be further 
divided into several categories, among which intracra-
nial hemorrhage (ICH) and major bleeding are most 
life-threatening and require specific treatment. The 
reported rates of post-thrombolysis ICH in AIS patients 
ranged from 0.2% to 1.0%, while the rate of major bleed-
ing could reach 15% [33]. Since the diagnosis criteria 
might vary in different studies, these absolute rates are 
for reference only.

The allergic reactions are more often seen in patients 
given streptokinase as it is a heterologous protein. Acute 
anaphylaxis is severe but unusual, which may manifest as 
itching and redness of the skin, vasogenic edema, bron-
chospasm, dyspnea, hypotension, arrhythmia and shock.

Before applying thrombolytic therapy, in order to select 
the appropriate patient, reduce the risks of death or seri-
ous complications, and to get prepared in advance, it is 
necessary to carry out risk assessments and take the risk–
benefit ratio into consideration.

Risk scores
Clinical prediction scores for risk stratification and out-
comes estimation of CVD patients have been developed 
in the past few decades. The regularly used risk scores 
are listed in Additional file 3 [34–43]. Though the scales 
for different CVDs vary, they have multiple indicators 
in common. Undoubtedly, the incidence of complica-
tions is correlated with the dose and type of TA applied. 
Besides, a variety of factors may play a role, including 
patient characteristics (age, gender, CVD history), symp-
tom severity, comorbidities (hypertension on admission, 
diabetes mellitus, atrial fibrillation, coagulation defects), 
other treatments, etc. [29, 44].

Regarding ACS, the TIMI risk score and the GRACE 
score are regarded as the most universally used scales 
for ischemic risk stratification and prognosis prediction. 
Their prominent advantage is the easy bedside applica-
tion attributed to the simple calculation method. There 
are two main versions of TIMI risk scores [34, 38]  for 

STEMI and UA/NSTEMI respectively. They both have 
reliable identification of high-risk patients and excellent 
discriminatory power but are weak at generalization. 
Eagle KA et al. [37] designed the GRACE model, which 
has higher accuracy (c statistics 0.81) and is enabled to 
predict the in-hospital and 6-month mortality of the 
entire spectrum of ACS patients, including those with ST 
elevation or depression [45]. Hence GRACE can be eas-
ier generalized. Nevertheless, according to the original 
study, it is not applicable to patients being observed in an 
emergency department [37]. In contrast to the massive 
bleeding risk scores for PCI and antithrombotic therapy, 
those scores for thrombolysis are currently few.

When it comes to AIS, the NIHSS score [46], devel-
oped and validated by Thomas et  al. in 1989, is used to 
determine stroke severity, treatment and prognosis [47]. 
This concise scale can be completed in 6.6 min, providing 
a quantitative measure of critical ingredients of a stand-
ard neurological examination [46, 48], and has become 
one of the predictors of post-thrombolysis ICH. The MSS 
score [40] is a simple clinical four-point risk score that 
combines age, NIHSS score, glucose and platelet count 
together. However, the original study only included 481 
patients, compromising its validity. M Lou et al. [41] con-
structed the HAT score, a quick and easy-to-perform 
five-point scale considering the pretreatment NIHSS 
score, CT findings, DM history and blood glucose. Its 
limitations are that this score was developed in retrospec-
tive studies, the sample size was also inadequate. Con-
sequently, the HAT score should be examined in larger 
cohorts and prospective studies before utilized in clinical 
decision making [41]. Compared with the HAT score, the 
SITS-ICH risk score [42] was based on a larger data set 
of 31,627 patients, and requires neither the measurement 
of blood platelet count (needed in the MSS score), nor 
the manifest infarct size on initial imaging (needed in the 
HAT score). Therefore, it can be more easily and imme-
diately calculated. The DRAGON score [49] has a scor-
ing similar to HAT score and uses the prestroke modified 
Rankin Scale (mRS) as one of the predicators, was origi-
nally developed to assess the short-term functional out-
come, but has since been used to assess intracranial 
hemorrhagic risk. The initial study of GRASPS score [43] 
was the first to report that male sex and Asian race were 
independent risk factors. This well-validated score is an 
excellent clinical tool to assess the risk of intravenous 
tPA-related symptomatic ICH in patients treated with 
tPA within 3 h of stroke onset, but it cannot provide an 
indication on how much benefit patients would gain from 
this strategy. Likewise, none of these risk scores should 
be used as a justification of withholding thrombolytic 
therapy, because they are incapable of demonstrating the 
harm is greater than the benefit [40–43].
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Application of risk prediction in post‑thrombolysis patients
Clinical studies are carried out to evaluate whether the 
scores or prediction models are reliable in risk predic-
tion, here we sorted the studies conducted in recent 
years to give a clear and objective comparison on them 
(Table 1 [50–66] was shown at the end of the text). Stud-
ies which did not give an explicit statement that patients 
had received thrombolytic therapy were excluded.

As for AMI, very few research discussed the per-
formance of different risk scores in post-thrombolysis 
patients. Steyerberg EW et al. [54]   compared the accu-
racy of Belgium model, GISS-II, TIMI and GUSTO-I 
risk score for the prediction of the all-cause mortality at 
30-day in 40,830 patients, GUSTO-I nomogram reached 
the highest AUC of 0.827. Besides, researchers have 
made attempts to discover new risk factors. Brewster 
LM et  al. [50]  applied a new multivariant model, with 
CK and age as predictors, to evaluate the risk of major 
bleeding and composite endpoint in 1473 patients, and 
the AUC reached 0.80 and 0.75, respectively, which was 
higher than other current scales. In addition, Hassan 
AKM et al. [53] combined GRACE and 6-min walk test 
in the evaluation of major adverse cardiovascular events 
(MACE), which gained a satisfying result with the OR of 
8.14, higher than that of GRACE (OR = 7.03) and TIMI 
(OR = 3.08) alone. In general, GUSTO-I and GRACE 
risk scores performed better in the prediction of post-
thrombolysis MACE. However, considering the lack of 
relevant studies and the potential bias between studies, a 
credible conclusion yet cannot be drawn. Compared with 
TIMI score, the scoring criteria of GUSTO-I and GRACE 
scores are more detailed, especially in the segmentation 
of age and heart rate. Despite the vital signs, the history 
of CVDs and some laboratory indicators are included 
as well. GUSTO-I score particularly takes ventricular 
function into consideration, by adding EF into the met-
rics. To further improve the accuracy of risk assessment, 
introducing more indicators seems to be a reasonable 
approach. Nevertheless, this is very likely to make the 
calculation more complicated, and the laboratory exami-
nation is time consuming, which is not feasible when an 
immediate risk assessment is in demand.

For post-thrombolysis AIS patients, one of the most 
life-threatening situations is hemorrhagic transformation 
(HT), which was often defined as symptomatic intracer-
ebral hemorrhage (SICH). Traditional risk scores, includ-
ing SEDAN, HAT, SITS-ICH, GRAPS, MSS, SPAN-100, 
and DRAGON, were utilized in HT prediction and their 
efficacy were validated by multiple clinical retrospec-
tive studies. Since each risk score was developed using 
different definitions to classify SICH, the variation of 
definitions across studies may have an impact on the 
accuracy. According to the initial study, the SEDAN and 

HAT scores used European Cooperative Acute Stroke 
Study II (ECASS II) definition, the GRASPS, MSS and 
SPAN-100 scores used the National Institute of Neuro-
logical Disorder and Stroke (NINDS) definition, while 
the SITS score used the SITS-MOST definition. Over-
all, the DRAGON score has a relatively higher predictive 
value, as its AUCs in different studies were all above 0.7 
[55, 56, 64], with a median of 0.77. The HAT score also 
shows high reliability, whose AUC fluctuated between 
0.64 and 0.78 [55–59, 62, 64]. In the research of Chang 
X et al. [64], which included 298 patients, the ASPECTS, 
DRAGON, HAT, and SEDAN scores achieved an AUC of 
0.895, 0.877, 0.777, and 0.764, respectively. These scores 
all use the signs on admission CT scan as one of the scor-
ing metrics, which may explain their better predictabil-
ity. The SEDAN, MSS, SITS-ICH, and GRASPS scores 
had similar risk assessment capabilities, with the median 
AUC of 0.67, 0.68, 0.68, and 0.67, respectively. Among all 
the mentioned scores, SPAN-100 had the least satisfac-
tory result. Sung SF et al. [59] applied SPAN-100 index in 
548 patients and the AUC to predict SICH per NINDS, 
ECASS-II and SITS-MOST was only 0.56, 0.55 and 0.57, 
respectively.

Above all, thrombolysis risk scores or prediction mod-
els for AMI and AIS varied from each other in feature 
and accuracy. It is still hard to determine which one is 
the best in the complicated clinical conditions, espe-
cially with the inputs of multi-dimensional datatype 
and increasing data. Thus, more efficient and accurate 
approaches to make risk assessment is in need.

Artificial Intelligence (AI) in risk prediction
Artificial intelligence (AI) refers to a branch of computer 
science that is developed to perform tasks that normally 
require human intelligence, perceiving environment and 
mimicking human cognitive behavior [70, 71]. Machine 
learning is one of the technical foundations of AI, which 
involves the automatic development of algorithms to 
identify patterns or groups in data [71]. When dealing 
with complex or massive data, higher accuracy can be 
achieved through machine learning over the traditional 
statistical methods. Deep learning, as a novel technique, 
uses multilayer neural networks to learn datasets with 
multiple levels of abstraction [72]. The representation of 
the input signal is learned by the network itself through 
training [73], and some deep learning models do not 
require manual supervision [74]. In this way, risks of 
systematic or random errors introduced by human fac-
tors are minimized. Deep convolutional neural networks 
(CNNs) and deep recurrent neural networks (RNNs) are 
two typical deep neural networks, specialized for spe-
cific learnings and can accomplish more complicated 
tasks through adequate combination [75]. With its high 
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Table 1 Accuracy of Risk Scores or Risk Prediction Models

First author, year Risk score/ Risk prediction 
model

Data set Observation period
endpoint

Results
Source
size (n)

Brewster LM, 2020 [50] CKmax TIMI 3B trial
1473

During hospitalization
1) Major bleeding
2) Composition of major 
bleeding, stroke and in-hospi-
tal death

1) AUC = 0.68
2) AUC = 0.69

Age 1) AUC = 0.68
2) AUC = 0.67

MV model (CK, age) 1) AUC = 0.80
2) AUC = 0.75

Chotechuang Y, 2020 [51] GRACE Primary data
Low GRACE score 
(< 126 points) group: 
229
Intermediate-high 
GRACE score (≥ 126 
points) group: 112

6 months
1) Composite cardiovascular 
outcome
2) In-hospital mortality
3) Re-hospitalized with HF

1) AUC = 0.746; p = 0.003; 
HR = 5.02; OR = 5.69
2) p = 0.252
3) p < 0.001

Chotechuang Y, 2016 [52] GRACE Primary data
Low GRACE score 
(< 126 points) group: 
88
Intermediate-high 
GRACE score (≥ 126 
points) group: 64

6 months
1) Composite cardiovascular 
outcome
2) In-hospital mortality
3) Re-hospitalized with HF
4) Cardiovascular death

1) AUC = 0.641; p = 0.024; 
HR = 2.97; OR = 3.20
2) p = 0.276
3) p = 0.036; OR = 5.34
4) AUC = 0.794

Hassan AKM, 2014 [53] 6MWTD Primary data
100

3 months
1) MACE
2) HF
3) Re-infarction
4) Post-MI angina
5) Death

1) OR = 7.14; p < 0.001;
2) p = 0.001
3) p = 0.09
4) p: NS
5) p < 0.001

GRACE 1) OR = 7.23; p = 0.004

GRACE + 6MWT 1) OR = 8.14; p < 0.001

TIMI 1) OR = 3.08; p = 0.07

Steyerberg EW, 2005 [54] Belgium model GUSTO-I
40,830

30 days
All- cause mortality

AUC = 0.780

TIMI-II AUC = 0.782

GISSI-II AUC = 0.757

GUSTO-I AUC = 0.821

GUSTO-I nomogram AUC = 0.827

Nisar T, 2019 [55] HAT Primary data
89

During hospitalization
SICH: NINDS, ECASS-II

AUC = 0.710, 0.769; p = 0.066, 
0.044

DRAGON AUC = 0.786, 0.701; p = 0.012, 
0.132

SITS-ICH AUC = 0.746, 0.655; p = 0.032, 
0.247

MSS AUC = 0.730, 0.705; p = 0.044, 
0.125

SPAN-100 AUC = 0.547, 0.576; p = 0.681, 
0.569

SEDAN AUC = 0.666, 0.617; p = 0.146, 
0.383

THRIVE AUC = 0.543, 0.539; p = 0.688, 
0.574
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Table 1 (continued)

First author, year Risk score/ Risk prediction 
model

Data set Observation period
endpoint

Results
Source
size (n)

Asuzu D, 2015 [56] DRAGON Primary data
210

During hospitalization
SICH: NINDS

AUC = 0.76

s-TPI AUC = 0.740

ASTRAL AUC = 0.72

HAT AUC = 0.70

PRS AUC = 0.66

SEDAN AUC = 0.66

SITS-ICH AUC = 0.65

SPAN-100 AUC = 0.57

Watson-Fargie T, 2015 [57] SEDAN Primary data
431

During hospitalization
SICH: NINDS, ECASS-II, SITS-
MOST

AUC = 0.72, 0.67, 0.62

HAT AUC = 0.78, 0.73, 0.67

GRASPS AUC = 0.74, 0.69, 0.65

SITS-ICH AUC = 0.72, 0.72, 0.68

Van Hooff RJ, 2014 [58] s-TPI MISS and UZB
169

During hospitalization
1) Functional outcome: Excel-
lent (mRS 0–1), Good (mRS 
0–2), Catastrophic (mRS 5–6)
2)SICH: NINDS, ECASS II

1) AUC = 0.80, 0.83, 0.86

iSCORE 1) AUC = 0.72, 0.80, 0.86

DRAGON 1) AUC = 0.79, 0.82, 0.81

MSS 2) AUC = 0.70, 0.86

HAT 2) AUC = 0.67, 0.79

SITS-SICH 2) AUC = 0.68, 0.76

SEDAN 2) AUC = 0.70, 0.69

GRASPS 2) AUC = 0.66, 0.83

Sung SF, 2013 [59] MSS Primary data
548

During hospitalization
SICH: NINDS, ECASS II, SITS-
MOST

AUC = 0.60, 0.62, 0.64

HAT AUC = 0.70, 0.69, 0.73

SITS-ICH AUC = 0.62, 0.61, 0.68

GRASPS AUC = 0.62, 0.61, 0.63

SPAN-100 AUC = 0.56, 0.55, 0.57

Sung SF, 2013 [60] SITS-ICH Primary data
ACS: 434
PCS: 84

During hospitalization
SICH: NINDS, ECASS II, SITS-
MOST, any ICH

ACS group: AUC = 0.64, 0.65, 
0.70, 0.59

PCS group: AUC = -, -, -, 0.79

Mazya M, 2013 [61] SEDAN SITS-ISTR
SICH group: 2222
NO SICH group: 41,760

-
SICH: NINDS, ECASS II, SITS-
MOST, any ICH

SICH group: AUC = 0.64, 0.65, 
0.70, 0.59

NO SICH group: AUC = 0.79

Strbian D, 2014 [62] MSS Primary data
3012

During hospitalization
SICH: NINDS, ECASS II, SITS-
MOST, any ICH

AUC = 0.62, 0.63, 0.66, 0.63

HAT AUC = 0.65, 0.65, 0.64, 0.65

SEDAN AUC = 0.69, 0.70, 0.69, 0.70

GRASPS AUC = 0.67, 0.67, 0.67, 0.67

SITS-ICH AUC = 0.61, 0.64, 0.67, 0.64

SPAN-100 AUC = 0.55, 0.56, 0.56, 0.56

Li M, 2015 [63] SEDAN TIMS-China
811

During hospitalization
SICH: NINDS, ECASS II, SITS-
MOST

AUC = 0.59, 0.59, 0.62

SITS-ICH AUC = 0.65, 0.69, 0.72

GRASPS AUC = 0.70, 0.73, 0.70

MSS AUC = 0.71, 0.72, 0.73
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efficiency and accuracy, machine learning is nowadays 
increasingly applied in clinical processes, including diag-
nosis, treatment, prognosis and management of multiple 
diseases [76]. Good application prospect was also seen 
in the field of cardiocerebrovascular. Ambale V et  al. 
[77] utilized random forest technique in the prediction 
of 6 cardiovascular events and reached higher predic-
tion accuracy than other established risk scores. Johnson 
KM et al. [78]  used 5 machine learning methods to build 
models of vessel features, which better discriminated 
patients with subsequent adverse outcomes compared 
with conventional scores.

A number of researchers were devoted to the applica-
tion of machine learning algorithms in post-thrombolysis 
risk prediction, identifying the potential predictors from 
various patient characteristics and developing new mod-
els (Table 2 [79–92] was shown at the end of the text).

The effectiveness of these models was validated 
through the comparison with traditional scores. In sev-
eral studies, new nomograms were generated through 
logistic regression analysis, among which that devel-
oped by Zhang K et al. [83] reached a high AUC of 0.889 

when predicting the risk of HT in 178 patients. Aziz F 
et al. [79] applied random forest, support vector machine 
and logistic regression models to predict short- and 
long-term mortality among heterogenous Asian STEMI 
patients. AUCs from 0.73 to 0.90 are achieved, with the 
highest AUCs of 0.89, 0.90 and 0.84 for hospitalization, 
30  days, and 1  year respectively, outperforming TIMI 
risk score whose AUCs are 0.81,0.80 and 0.76. When it 
comes to AIS, in most studies AI models showed bet-
ter prediction ability of hemorrhagic complications 
than traditional risk scores or statistically based models. 
Some researchers extracted radiomic features and uti-
lized machine learning to build radiomics models. Meng 
Y et  al. [81]   extracted 5,400 radiomic features from 
20 normal and abnormal regions of interest (ROIs) of 
MRI images among 71 patients, used the least absolute 
shrinkage and selection operator (LASSO) regression 
for feature selection, and constructed a radiomics model 
through RF, which was combined with 16 screened clini-
cal factors with better support. The AUC with All-ROIs 
reached 0.871 and was further promoted to 0.91 when 
combined with other clinical factors. In addition to HT 

Table 1 (continued)

First author, year Risk score/ Risk prediction 
model

Data set Observation period
endpoint

Results
Source
size (n)

Chang X, 2021 [64] ASPECTS Primary data
248

During hospitalization
Hemorrhagic transformation

AUC = 0.895; Se = 100%; 
Sp = 60.7%

DRAGON AUC = 0.877; Se = 84.4%; 
Sp = 82.1%

SEDAN AUC = 0.764; Se = 78.6%; 
Sp = 68.6%

HAT AUC = 0.777; Se = 68.8%; 
Sp = 82.1%

Orbán-Kálmándi R, 2021 [65] CLA AUC Primary data
231

90 days
1) SICH: ECASS II
2) Unfavorable functional out-
comes (mRS > 2)/ no change

1) Se = 61.1%; Sp = 56.8%
2) Se = 49.5%; Sp = 66.7%

Modified CLA (CLA in the pres-
ence of cfDNA and histones)

1) Se = 66.7%; Sp = 62.0%
2) Se = 64.2%; Sp = 55.2%

Turcato G, 2016 [66] RDW Primary data
316

1 year
1) Lack of neurological 
improvement
2) All-cause mortality

1) AUC = 0.667, p < 0.01
2) Median survival: 
280 (RDW ≥ 14.5%) 
and 341(RDW < 14.5%) days

DM Diabetes melitus, CKD Chronic kidney disease, DAPT Dual antiplatelet therapy, LMWH Low molecular weight heparin, AUC  Area under the receiver-operating 
characteristics curve, OR Odds ratio, HR Hazard ratio, Se Sensitivity, Sp Specificity, TSOC ACS-DM The Acute Coronary Syndrome-Diabetes Mellitus Registry of the 
Taiwan Society of Cardiology, BRAVO Building, Relating, Assessing, and Validating Outcomes, EMPA-REG OUTCOME Empagliflozin, Cardiovascular Outcomes, and 
Mortality in Type 2 Diabetes [67], CANVAS Canagliflozin Cardiovascular Assessment Study [68], DECLARE-TIMI 58 Dapagliflozin and cardiovascular outcomes in 
type 2 diabetes [69], MACE Major adverse cardiovascular events, 6MWT 6-min walk test, ACSIS Acute Coronary Syndrome Israeli Survey, OTT Onset to thrombolysis, 
CREDO-Kyoto Coronary Revascularization Demonstrating Outcome Study in Kyoto, RESET Randomized Evaluation of Sirolimus‐Eluting Versus Everolimus‐Eluting Stent 
Trial, NEXT Nobori Biolimus‐Eluting Versus Xience/Promus Everolimus‐Eluting Stent Trial, ECASS-II European-Australasian Cooperative Acute Stroke Study-II, NINDS 
National Institute of Neurological Disorders and Stroke, SICH symptomatic intracerebral hemorrhage, CHF Chronic heart failure, AF Atrial fibrillation, MISS Middelheim 
Interdisciplinary Stroke Study, UZB Universitair Ziekenhuis Brussel, ACS Anterior circulation stroke, PCS Posterior circulation stroke, SITS-ISTR Safe Implementation of 
Treatment in Stroke-International Stroke Thrombolysis Registry, TIMS-China Thrombolysis Implementation and Monitor of acute ischemic Stroke in China, BUN/Cr 
Blood urea nitrogen-to-creatinine ratio, NLR neutrophil-to-lymphocyte ratio, DCA Decision curve analysis, NT-proBNP N-terminal pro-brain natriuretic peptide, CHD 
coronary heart disease, HT Hemorrhagic transformation, ASPECTS Alberta stroke project early CT score, CLA clot lysis assay, mRS Modified RANKIN Sore, RDW Red 
blood cell distribution width
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prediction after thrombolysis, radiomics-based models 
can also evaluate hemorrhage expansion well. Liu J  et 
al. [87]   applied LASSO regression to identify five opti-
mal radiomic image features on non-contrast-enhanced 
CT (NECT) as predictors, and developed a quantitative 
radiological score with a maximum AUC of 0.91. Besides, 
some researchers have also utilized deep learning to 
construct thrombolytic risk assessment models for AIS 
patients. To predict 24-h and 90-day functional outcomes 
better, Bacchi S et al. [90]  constructed a new prediction 
model among 204 stroke patients, using CNN and artifi-
cial neural networks (ANN), and found that a combina-
tion of CNN and ANN based on CT image and clinical 
data had the best performance, with the highest AUC of 
0.70 and 0.75, respectively. Wang F et al. [89] have used 
logistic regression (LR), neutral network, support-vector 
machine (SVM), random forest (RF) and adaptive boost-
ing (AdaBoost) to develop five machine learning models 
in 2237 cases for post-thrombolysis sICH prediction, 
screening out the five most valuable input factors (age, 
AF, glucose, NIHSS score and door-to-need time). The 
three-layer neural network model performed best and 
its AUC was 0.82. Among 40 patients, Chen Z et al. [88] 
have proposed a new prediction model named AUNet, 
which combined the features of an adaptive linear 
ensemble model (ALEM) and a deep U-Net network with 
an accelerated non-local module (U-NL-Net), to predict 
infarct volumes for AIS patients with or without recanali-
zation, and the AUCs were 0.898 and 0.875, respectively.

AI models have obvious advantages in post-thromboly-
sis risk prediction, including high efficiency, higher accu-
racy when dealing with massive and multi-dimensional 
data, the capacity of comparing different methodologies 
on the same database, suitability for multi-ethnic popula-
tion and so on. Undeniably, there are certain shortcom-
ings, such as poor interpretability, weak generalization, 
and the unsatisfactory accuracy of some models. To solve 
these problems, efforts should be made in the improve-
ment of algorithms, the enhancement of interpretability 
analysis, and the establish of multi-centered and normal-
ized databases.

Conclusion
Among CVDs, blockage diseases such as CHD and 
stroke are the leading cause of death, imposing a huge 
burden to the public health. The key treatment is to 
recanalize the embolized vascular and restore blood sup-
ply in the ischemic area. Thrombolytic therapy is a basic 
therapy in the recanalization strategy, whose advan-
tages lays in rapidity, economy and non-invasiveness. 
However, the thrombolysis-related clinical risks such as 
hemorrhagic complications, futile recanalization and 
reocclusion, restrict the use of thrombolysis, yet make 

the pretreatment risk assessment necessary. New risk 
scores and AI-based prediction models are therefore 
continually developed and modified. It is still hard to say 
which risk score can achieve the highest accuracy, but 
with the continuous improvement of risk prediction, the 
application of thrombolysis will be relatively safer, which 
definitely brings great benefits to patients.
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