Skip to main content

Restenosis after excimer laser coronary atherectomy and drug-coated balloon dilation in Takayasu’s arteritis: a case report and review of the literature

Abstract

Takayasu’s arteritis (TAK) is a rare chronic granulomatous arteritis that mainly affects the aorta and its major branches. Coronary artery (CA) involvement can be observed in 10–25% of TAK patients. We report a 21-year-old young female who was previously diagnosed with TAK and severe left main coronary artery (LMCA) stenosis and underwent numerous percutaneous coronary interventions (PCIs) in our hospital due to in-stent restenosis (ISR). This time, an excimer laser coronary atherectomy (ELCA) and drug-coated balloon (DCB) dilation was taken at the LMCA for the ISR. The blood flow was smooth after the operation, and she was symptom-free after discharge. Unfortunately, 5 months later, severe intimal hyperplasia was still seen in the stent of LMCA and left anterior descending (LAD) coronary artery. A coronary artery bypass graft surgery (CABG) was performed, and she has been symptom-free ever since. ELCA plus DCB is one of the novel ways we first reported. However, ensuring long-term inflammation control is equally important to restore blood flow. The combination of revascularization and anti-inflammation/immunosuppression is recommended to improve the outcomes of TAK patients with CA involvements.

Introduction

Takayasu’s arteritis (TAK), characterized by involvement of the aorta and its major branches, is a rare chronic granulomatous arteritis commonly found in children and young adults [1, 2]. The pathological presentation of TAK includes systemic chronic inflammatory processes in the blood vessels [2]. Vascular stenosis occurs in about 90% of TAK patients at the chronic stage of the disease, affecting the cerebral vasculature and the limbs primarily [3]. Coronary artery (CA) involvement can only be observed in 10–25% of TAKs [4]. Although stenotic CAs are rare, adverse events (including myocardial ischemia and myocardial infarction) often result in poor outcomes for patients with TAK. Therefore, it has become one of the essential focus on treating TAK with CA involvement.

Treatment strategies for TAK with CA involvement include revascularization, and anti-inflammatory and/or immunosuppressive therapies. Despite the absence of significant differences between medical therapy and revascularization in cardiac mortality [5], emergency revascularization therapy is urgently needed when TAK patients suffer from acute myocardial infarction [6], as drugs cannot restore coronary blood flow in the acute phase.

Revascularization approaches include percutaneous coronary interventions (PCI) and coronary artery bypass graft surgery (CABG), and the former is favorable by patients due to minimal invasion and comparable cardiac mortality [5]. PCIs include metallic stent implantation and balloon dilatation, but in-stent restenosis (ISR) frequently occurs in metallic stent implantation. For ISR management, drug-eluting stents (DES), drug-coated balloons (DCB), and excimer laser coronary atherectomy (ELCA) are currently used [7]. Only a few studies are currently evaluating DES/DCB for treating patients with TAK and CA involvements, and the effectiveness is unclear. Here, we reported the first case in which we combined ELCA and DCB dilation in a TAK female suffering from repeated ISRs, and performed a literature review of TAK cases with CA involvements undergoing PCI treatment.

Case presentation

A 21-year-old TAK female with a history of repeated stent implantation presented to our hospital in August 2021, complaining of 5-day chest pain. This was her fifth hospitalization after the first in January 2018.

She was first admitted to our hospital in January 2018 for chest pain. The patient proclaimed no skin lesions, arthralgia, or recurrent oral ulcers. Furthermore, she had no family history of congenital heart disease. Physical examinations showed that asymmetric blood pressure in the upper limbs with differences was greater than 20 mmHg. No obvious murmurs were detected upon auscultation of the cardiac valve areas, bilateral carotid arteries, subclavian arteries, and renal arteries. Laboratory examination showed troponin T level increased to 28.6 ng/L (upper limit of normal [ULN]: 14 ng/L). The level of erythrocyte sedimentation rate (ESR) (10.0 mm/h, ULN: 26 mm/h) and C-reactive protein (CRP) (3.97 mg/L, ULN: 5 mg/L) were normal. Anti-nuclear antibodies, anti-neutrophil cytoplasmic antibodies, anti-cyclic citrullinated peptide antibodies, rheumatoid factor, and serologic tests for syphilis were all negative. The ultrasound of the cervical arteries showed uneven diameter and thickened wall of the right common carotid artery. The echocardiography indicated no abnormalities in the cardiac structures and wall motions. The enhanced-contrast computed tomography (CT) angiography indicated thickening of the vessel wall and mild narrowing in the proximal, middle, and distal segments of the right carotid artery (Supplementary Figure S1). No abnormalities were observed in other vessels.

She consented to the first coronary artery angiography (CAG), which revealed 90% stenosis of the left main coronary artery (LMCA) without stenosis of other CAs. A DES (3.5 × 12 mm, PROMUS Premier, Boston Scientific) was implanted in the LMCA. In the aftermath of the procedure, chest pain was relieved. She was diagnosed with TAK based on the 1990 American College of Rheumatology criteria [8]. Glucocorticoids, mycophenolate mofetil, aspirin, and clopidogrel were prescribed to the patient and maintained after discharge. Due to her financial constraints, biologics was declined to use. The medications were modified in the outpatient rheumatology department.

She took the medication irregularly regardless of the prescription, and the disease activity were not persistently controlled (based on Kerr’s criteria [9] and Indian Takayasu Clinical Activity Score [ITAS] [10], shown in the Supplementary Table S1). She suffered from recurrent chest pain during follow-up and was admitted three times after the first DES implantation (Fig. 1). In this admission in August 2021, glucocorticoids and cyclosporine A kept the levels of ESR and CRP relatively normal. Considering the history of multiple stent implantations and ISRs and her refusal of CABG, ELCA and DCB dilation was performed at the LMCA after obtaining the informed consent of the patient. ELCA utilized an incremental energy setting, starting with 40 mJ/40Hz and completing with 60 mJ/40Hz. After laser atheroablation, a 3.5 × 30 mm paclitaxel-coated balloon (Braun Melsungen, AG Vascular Systems, Berlin, Germany) was used. After the operation, the blood flow was smooth (Fig. 2. A–F). The results of CA involvements and medication prescriptions were shown in Supplementary Table S2.

Fig. 1
figure 1

The clinical course of the disease. After the first hospitalization, the second to fourth coronary artery angiographies (CAGs) showed in-stent restenosis in the left main coronary artery (LMCA) and new stenosis of the left anterior descending (LAD) and left circumflex artery. Percutaneous transluminal coronary angioplasties were performed in the second to third hospitalization, and another drug-eluting stent (4.0 × 12 mm, PROMUS Element, Boston Scientific) was implanted in conjunction of LAD and LMCA in the fourth admission (November 2020). She consistently received anti-inflammation therapy and glucocorticoids tapered at 10 mg daily orally. Mycophenolate mofetil was changed to cyclophosphamide and successively cyclosporine A due to the twice bounce of erythrocyte sedimentation rate and C-reactive protein when in the outpatient of the rheumatology department. She took excimer laser coronary atherectomy and drug-coated balloon dilation in the fifth hospitalization. (A. CAGs of five times for the Takayasu’s arteritis patient; B. Erythrocyte sedimentation rate and C-reactive protein surveillance, and drug therapies)

Fig. 2
figure 2

Coronary angiography and optical coherence tomography of coronary lesions during the fifth hospitalization (A–B: Before excimer laser coronary atherectomy, the minimal luminal area was 2.8 mm2; C–D: After excimer laser coronary atherectomy, the minimal luminal area was 5.1 mm2; E–F: After drug-coated balloon dilation, the minimal luminal area was 6.7 mm2; G–H: Five-month follow-up. Red arrow: laser catheter)

Although she was symptom-free after discharge and was prescribed continually with glucocorticoids, cyclosporine A, aspirin, and ticagrelor, unfortunately, the follow-up CAG after five months showed severe intimal hyperplasia in the stents of LMCA-LAD conjunction, with maximum stenosis of approximately 90% (Fig. 2. G-H). A CABG was eventually performed, and she has been symptom-free ever since.

Discussion

This is the first case of ELCA plus DCB dilation in a TAK female with CA involvement after repeated ISRs, with long-term anti-inflammation and immunosuppression therapies. Chest pain was controlled in the acute phase but she was treated with CABG due to ISRs after the ELCA plus DCB. This case suggested several important points on TAK with CA involvements. Firstly, the diagnosis of TAK should be established in the early stage because it determined whether anti-inflammation and immunosuppression is needed. Secondly, it is equally important for a TAK patient with CA involvements to restore blood flow of CA in the acute phase and to ensure inflammation control in the long-term follow-up.

When young patients suffer from acute chest pain without a family history or a personal history of cardiovascular disease, the evaluation of peripheral arteries, autoantibodies, and CAs is important in the diagnosis of TAK [11], because it determines that the patients with CA involvement need systematic anti-inflammatory/immunosuppressive therapies combined with local revascularization. The treatment of TAK patients usually differs from those only with coronary artery disease, as the latter often do not need anti-inflammation and immunosuppression therapy.

It is essential for patients with TAK who suffer from CA involvement to undergo revascularization, especially during the acute phase. However, the risk of developing ISR and undergoing re-revascularization is higher in PCI patients [5]. In our literature review (Table 1 and Supplementary Table S3), nearly 30% patients treated with bare metal stent (BMS) experienced revascularizations more than one times[12,13,14,15], whilst there were no patients treated with BMS among the groups with single revascularizations [16,17,18,19,20,21,22,23,24]. Currently, many cardiologists believe that TAK pathology is characterized by immune cell infiltration [24], and BMS is a permanent foreign material to the vessels, which may stimulate a rapid response to the non-self-substances and cause intimal hyperplasia and restenosis. Compared to BMS, DES has antiproliferative drugs coated on itself and can reduce inflammation-mediated intimal hyperplasia and treat local arterial inflammation. Previous studies have shown that DES has a lower ISR rate than BMS [25, 26]. However, despite the improvement in stent material and drug coating technologies, ISR incidences are still as high as 10%, whether with BMS or DES [27].

Table 1 Summary of reported cases of TAK with coronary involvement treated with drug-eluting stent and/or drug-coated balloon dilation

DCB is a novel technology for ISR treatment and it ensures coated antiproliferative drugs diffuse into culprit CAs, inhibiting neointimal hyperplasia. The DCB does not place an external object inside the vessels as the DES does, therefore it does not stimulate inflammatory responses by metal trabeculae and polymers in the endothelial and smooth muscles of the vessels [36]. However, a meta-analysis found that DCB has a higher rate of revascularization of the target vessel three years after PCI than DES, although the incidence rates were comparable [37]. The findings do not appear to apply to CA involvements related to TAK. Chiew et al. [24] reported a 47-year-old TAK woman with CA involvement treated with the DCB. Four months after DCB dilation, optical coherence tomography revealed complete endothelial healing, which implies luminal enlargement from positive remodeling [24]. However, the specific effectiveness of DCB on TAK-related CA involvement is limited by a small number of cases reports and the absence of large-scale studies and prospective trials.

ELCA, a crucial way of revascularization in our case, is feasible and has been applied in various complicated CA lesions, such as thrombus, repeated ISR, and under-expansion of the stent [38, 39]. Our case is the first application of ELCA before DCB dilation in patients with TAK with CA involvement. After ELCA and DCB dilation, no acute chest pain was observed for our patient during the next five months, which suggested that the combined revascularization strategies without implanting a permanent foreign body could be a viable option for these patients. However, a post-DCB CAG revealed another ISR despite being symptom-free. Nevertheless, it should be noted that the damage to the coronary intima associated with ELCA might contribute to stent thrombosis and restenosis [40]. Therefore, despite the potential feasibility of ELCA in TAK with CA involvements, the conservation of coronary intima during ELCA is critical to preventing ISR in the long-term follow-up. Our patient eventually underwent CABG and has been asymptomatic since then, indicating that CABG might be the best way to solve ISR in TAK with CA involvements so far [41].

In addition to local revascularization or non-implantation intervention, persistent disease activity is strongly related to ISR after PCIs in TAK patients, highlighting the importance of long-term anti-inflammation therapy [6]. Immunosuppressants include traditional drugs such as leflunomide, cyclophosphamide, and methotrexate [42, 43] and biologics such as Tocilizumab [44]. Steroids are the baseline medication of TAK. But almost 29–73% of TAK patients also required additional immunosuppressants to induce or maintain remission and reduce the side effect of glucocorticoids [45]. The long-term administration of glucocorticoids may lead to dyslipidemia [46], posing a potential risk of aggravating CA lesions. In our case, statin therapy was prescribed to the patients and the lipid levels have been fluctuating within the normal range (Supplementary Table S4). The progression of the CA lesions of our case is more likely associated with inadequate control of inflammation. Therefore, anti-inflammatory therapy is essential to reduce the risk of ISR [47]. Other two cases in the literature review also showed repeated ISR after stent implantation without anti-inflammatory or immunosuppressants [13, 14]. In a retrospective study with 48 TAK patients, those who continued maintenance therapy with low-dose steroids had a lower incidence of ISR [48], which suggested that maintenance of anti-inflammatory treatment is vital to decrease the risk of ISRs.

As for immunosuppressants, Sammel et al. [32] reported a 55-year-old woman who underwent treatment for critical coronary stenosis using BMS, DES, and eventually CABG, but suffered from restenosis after each procedure. After the patient was given immunosuppressants, the involved blood vessel became largely improved. Additionally, regression of the ostial lesions was observed in a TAK patient who received immunosuppressive treatment [49]. These cases highlighted the significance of immunosuppressive therapies in TAK patients with CA involvement, but there is no relevant research to determine whether TAK patients need additional oral or intravenous immunosuppressants to prevent ISR after DES/DCB, because several coated drugs on DES/DCB (including paclitaxel, zotarolimus, and sirolimus) have a local immunosuppressive effect. Interleukin-6 receptor blocker (such as Tocilizumab) and tumor necrosis factor inhibitors now are considered as a treatment option for TAK [24, 30, 34, 50]. TAK patients scheduled for CABG may also benefit from tocilizumab for the per-operative period [51]. However, our patient declined biologics due to financial constraints.

Conclusion

In summary, the case report and literature review suggested that the diagnosis of TAK at the early stage is essential due to its determination on the use of anti-inflammatory and immunosuppressive therapies. The strategy without intravascular object implantation may be a feasible way for revascularization in the acute phase of TAK patients with CA involvements. ELCA plus DCB is one of the novel ways we first reported. However, ensuring long-term inflammation control is equally important to restore the blood flow. The combination of revascularization and anti-inflammation/immunosuppression is recommended to improve the outcomes of TAK patients with CA involvements. More research is warranted on the novel revascularization strategies and therapies for the TAK patients.

Data Availability

The data presented in this study are available on reasonable request from the corresponding author.

Abbreviations

BMS:

bare metal stent

CA:

coronary artery

CAG:

coronary artery angiography

CABG:

coronary artery bypass graft surgery

CRP:

C-reactive protein

CT:

computed tomography

CTX:

cyclophosphamide

DCB:

drug-coated balloons

DES:

drug-eluting stents

ELCA:

excimer laser coronary atherectomy

ESR:

erythrocyte sedimentation rate

ISR:

in-stent restenosis

LAD:

left anterior descending artery

LCX:

left circumflex artery

LMCA:

left main coronary artery

MMF:

mycophenolate mofetil

TAK:

Takayasu’s arteritis

PCI:

percutaneous coronary intervention

Pred:

prednisolone

RCA:

right coronary artery

References

  1. Bechman K, Gopalan D, Nihoyannopoulos P, et al. A cohort study reveals myocarditis to be a rare and life-threatening presentation of large vessel vasculitis. Semin Arthritis Rheum. 2017;47(2):241–6.

    Article  PubMed  Google Scholar 

  2. Tombetti E, Mason JC. Takayasu arteritis: advanced understanding is leading to new horizons. Rheumatology (Oxford). 2019;58(2):206–19.

    Article  CAS  PubMed  Google Scholar 

  3. Zeng Y, Duan J, Ge G, Zhang M. Therapeutic management of ocular ischemia in Takayasu’s arteritis: a case-based systematic review. Front Immunol. 2022;12:791278.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mason JC. Takayasu arteritis–advances in diagnosis and management. Nat Rev Rheumatol. 2010;6(7):406–15.

    Article  PubMed  Google Scholar 

  5. Huang Z, Zhang H, Wang M, Yang W, Qiao S, Hu F. Revascularization Versus Medical Therapy in Takayasu’s arteritis patients with coronary artery involvement. Rheumatol Ther. 2021;8(1):119–33.

    Article  PubMed  Google Scholar 

  6. Joseph G, Thomson VS, Attumalil TV, et al. Outcomes of percutaneous intervention in patients with Takayasu Arteritis. J Am Coll Cardiol. 2023;81(1):49–64.

    Article  PubMed  Google Scholar 

  7. Tonomura D, Shimada Y, Yamanaka Y, et al. Laser vaporization of atherothrombotic burden before drug-coated balloon application in ST-segment elevation myocardial infarction: two-year outcomes of the laser-DCB trial. Catheter Cardiovasc Interv. 2022;99(6):1758–65.

    Article  PubMed  Google Scholar 

  8. Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990;33(8):1129–34.

    Article  CAS  PubMed  Google Scholar 

  9. Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med. 1994;120(11):919–29.

    Article  CAS  PubMed  Google Scholar 

  10. Misra R, Danda D, Rajappa SM, et al. Development and initial validation of the indian Takayasu Clinical Activity score (ITAS2010). Rheumatology (Oxford). 2013;52(10):1795–801.

    Article  PubMed  Google Scholar 

  11. Khanna S, Garikapati K, Goh DSL, et al. Coronary artery vasculitis: a review of current literature. BMC Cardiovasc Disord. 2021;21(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Furukawa Y, Tamura T, Toma M, et al. Sirolimus-eluting stent for in-stent restenosis of left main coronary artery in takayasu arteritis. Circ J. 2005;69(6):752–5.

    Article  PubMed  Google Scholar 

  13. Lee K, Kang WC, Ahn T, et al. Long-term outcome of drug-eluting stent for coronary artery stenosis in Takayasu’s arteritis. Int J Cardiol. 2010;145(3):532–5.

    Article  PubMed  Google Scholar 

  14. Lee HK, Namgung J, Choi WH, et al. Stenting of the left main coronary artery in a patient with Takayasu’s arteritis. Korean Circ J. 2011;41(1):34–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Soeiro Ade M, Pinto AL, Henares BB, Ribeiro HB, Lima FG, Serrano CV Jr. Takayasu arteritis: stenosis after bare-metal and drug-eluting stent implantation. Arq Bras Cardiol. 2013;100(1):e8–e11.

    PubMed  Google Scholar 

  16. Amir O, Kar B, Civitello AB, Palanichamy N, Shakir A, Delgado RM 3rd. Unprotected left main stent placement in a patient with Takayasu’s arteritis: an unusual solution for an unusual disease. Tex Heart Inst J. 2006;33(2):253–5.

    PubMed  PubMed Central  Google Scholar 

  17. Park JS, Lee HC, Lee SK, et al. Takayasu’s Arteritis Involving the Ostia of three large coronary arteries. Korean Circ J. 2009;39(12):551–5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Terasawa A, Kondo K, Ishikawa S, Morimoto R, Tajika T, Hayashi Y. Sirolimus-eluting stent implantation for ostial stenosis of left main coronary artery after Bentall operation in aortitis syndrome. J Cardiol. 2010;55(1):147–50.

    Article  PubMed  Google Scholar 

  19. Cheng Z, Yue C, Shen Z, Fang Q. Percutaneous coronary intervention in Takayasu’s arteritis. Int J Cardiol. 2011;151(2):231–2.

    Article  PubMed  Google Scholar 

  20. Isser HS, Chakraborty P, Bansal S. Coronary angioplasty of left main coronary artery in patient with Takayasu’s arteritis. Indian Heart J. 2013;65(5):650–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Camuglia AC, Randhawa VK, Lavi S. Takayasu arteritis involving the left main coronary artery treated with a bioresorbable vascular scaffold. Int J Cardiol. 2015;190:1–3.

    Article  PubMed  Google Scholar 

  22. Rigatelli G, Zuin M, Picariello C, Cardaioli P, Roncon L. Aortitis-related isolated bilateral coronary artery ostial stenosis in a young woman with acute coronary syndrome. Int J Cardiol. 2016;223:111–2.

    Article  PubMed  Google Scholar 

  23. Zhou S, Gao C, Li F. Acute myocardial infarction with left main coronary artery ostial negative remodelling as the first manifestation of Takayasu arteritis: a case report. BMC Cardiovasc Disord. 2021;21(1):560.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chiew KLX, Lim PO. Three-year outcome with drug-coated balloon percutaneous coronary intervention in coronary Takayasu arteritis: a case review. Catheter Cardiovasc Interv. 2021;97(5):841–6.

    Article  PubMed  Google Scholar 

  25. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349(14):1315–23.

    Article  CAS  PubMed  Google Scholar 

  26. Grube E, Silber S, Hauptmann KE, et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation. 2003;107(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  27. Shlofmitz E, Iantorno M, Waksman R. Restenosis of drug-eluting stents: a new classification system based on Disease mechanism to Guide Treatment and State-of-the-art review. Circ Cardiovasc Interv. 2019;12(8):e007023.

    Article  CAS  PubMed  Google Scholar 

  28. Sakai H, Oyama N, Kishimoto N, et al. Revascularization of malignant coronary instent restenosis resulting from Takayasu’s arteritis using sirolimus-eluting stents. Int Heart J. 2006;47(5):795–801.

    Article  PubMed  Google Scholar 

  29. Yokota K, Shimpo M, Iwata T, et al. A case of Takayasu arteritis with repeated coronary artery restenosis after drug-eluting stent implantation successfully treated with a combination of steroids. Intern Med. 2012;51(7):739–43.

    Article  PubMed  Google Scholar 

  30. Empen K, Hummel A, Beug D, Felix SB, Busch MC, Kaczmarek PM. Takayasu’s arteritis: a case with relapse after urgent coronary revascularization. BMC Res Notes. 2017;10(1):311.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Macedo LM, Lima NA, de Castro Junior RL, Bannon SF. Takayasu arteritis with multiple coronary involvement and early graft relapse. BMJ Case Rep. 2019;12(4):e229383.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sammel AM, Wolfenden HD, Joshua F, Jepson N. Reduced efficacy of transcatheter and surgical revascularization in Takayasu arteritis. Int J Rheum Dis. 2019;22(1):152–7.

    Article  PubMed  Google Scholar 

  33. Shimizu T, Sato A, Sakamoto K, et al. Intravascular ultrasound imaging of isolated and non aorto-ostial coronary Takayasu arteritis: a case report. BMC Cardiovasc Disord. 2020;20(1):260.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Madhavan MV, Coromilas EJ, Poterucha TJ, et al. Repeat revascularization for severe recurrent coronary artery disease in a Young Woman with Takayasu Arteritis. JACC Case Rep. 2020;2(1):77–81.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen Q, Zhao QM. Five-year outcome with revascularisation therapy in Takayasu arteritis with multiple coronary involvement: a case review. Cardiol Young. 2022;32(11):1857–9.

    Article  PubMed  Google Scholar 

  36. Ali RM, Abdul Kader MASK, Wan Ahmad WA, et al. Treatment of Coronary Drug-Eluting Stent Restenosis by a Sirolimus- or paclitaxel-coated balloon. JACC Cardiovasc Interv. 2019;12(6):558–66.

    Article  PubMed  Google Scholar 

  37. Giacoppo D, Alfonso F, Xu B, et al. Paclitaxel-coated balloon angioplasty vs. drug-eluting stenting for the treatment of coronary in-stent restenosis: a comprehensive, collaborative, individual patient data meta-analysis of 10 randomized clinical trials (DAEDALUS study). Eur Heart J. 2020;41(38):3715–28.

    Article  CAS  PubMed  Google Scholar 

  38. Shibui T, Tsuchiyama T, Masuda S, Nagamine S. Excimer laser coronary atherectomy prior to paclitaxel-coated balloon angioplasty for de novo coronary artery lesions. Lasers Med Sci. 2021;36(1):111–7.

    Article  PubMed  Google Scholar 

  39. Rawlins J, Din JN, Talwar S, O’Kane P. Coronary intervention with the Excimer laser: review of the Technology and Outcome Data. Interv Cardiol. 2016;11(1):27–32.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamanaka Y, Shimada Y, Tonomura D, et al. Laser vaporization of intracoronary Thrombus and identifying plaque morphology in ST-Segment Elevation myocardial infarction as assessed by Optical Coherence Tomography. J Interv Cardiol. 2021;2021:5590109.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Joseph G, Goel R, Thomson VS, Joseph E, Danda D. Takayasu Arteritis: JACC Focus Seminar 3/4. J Am Coll Cardiol. 2023;81(2):172–86.

    Article  Google Scholar 

  42. Wu C, Sun Y, Cui X, et al. Effectiveness and safety of methotrexate versus leflunomide in 12-month treatment for Takayasu arteritis. Ther Adv Chronic Dis. 2020;11:2040622320975233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dai X, Cui X, Sun Y, Ma L, Jiang L. Effectiveness and safety of leflunomide compared with cyclophosphamide as induction therapy in Takayasu’s arteritis: an observational study. Ther Adv Chronic Dis. 2020;11:2040622320922019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liao H, Du J, Li T, Pan L. Tocilizumab for faster and safer remission of Takayasu’s arteritis. Ther Adv Chronic Dis. 2022;13:20406223221131715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Borg FA, Dasgupta B. Treatment and outcomes of large vessel arteritis. Best Pract Res Clin Rheumatol. 2009;23(3):325–37.

    Article  PubMed  Google Scholar 

  46. Newman CB, Blaha MJ, Boord JB, et al. Lipid management in patients with endocrine Disorders: an endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2020;105(12):dgaa674.

    Article  PubMed  Google Scholar 

  47. Park MC, Lee SW, Park YB, Lee SK, Choi D, Shim WH. Post-interventional immunosuppressive treatment and vascular restenosis in Takayasu’s arteritis. Rheumatology (Oxford). 2006;45(5):600–5.

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Dang A. Prognostic Value of Brachial-Ankle Pulse Wave velocity in patients with Takayasu Arteritis with Drug-Eluting Stent Implantation. Arthritis Care Res (Hoboken). 2015;67(8):1150–7.

    Article  PubMed  Google Scholar 

  49. Yokokawa T, Kunii H, Kaneshiro T, et al. Regressed coronary ostial stenosis in a young female with Takayasu arteritis: a case report. BMC Cardiovasc Disord. 2019;19(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maz M, Chung SA, Abril A, et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the management of Giant Cell Arteritis and Takayasu Arteritis. Arthritis Rheumatol. 2021;73(8):1349–65.

    Article  PubMed  Google Scholar 

  51. Arita Y, Nakaoka Y, Eda Y, Kitabayashi K, Hasegawa S. Perioperative Management of Takayasu Arteritis for Cardiac surgery in a patient treated with Tocilizumab. JACC Case Rep. 2020;2(15):2363–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Key Research and Development Programs of Sichuan Province (No.2022YFS0357), the Fellowship of China Postdoctoral Science Foundation (No.2020M683325), the Post-Doctor Research Project, West China Hospital, Sichuan University (No.2020HXBH048), and the Innovative scientific research project of medical youth in Sichuan Province (No.Q20061).

Author information

Authors and Affiliations

Authors

Contributions

L.SC, Y. JM and M. M contributed equally to this work. L. SC, Y. JM, M. M, Z. MG and L. ZY participated in the design, collected the data, imaging data analysis, and drafted the manuscript. H.H and Y.H helped to revise the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to He Huang or Yong He.

Ethics declarations

Ethics approval and consent to participate

None of the patient’s personal identifcation was mentioned in the manuscript. The patient’s consent was approved by Ethical committee of West China Hospital, Sichuan University.

Consent for publication

An informed written consent was obtained from the patient.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1. Table S1

. The Kerrs Score, ITAS Score and ITAS. A Score during follow-up. Table S2. The results of the CAG of our patient. Table S3. The manufacturers of the stents and balloons. Table S4. Fluctuation of the platelet count and serum lipid profiles of the whole process. Table S5. Search strategies for searching case reports of Takayasu arteritis patients with coronary artery involvement. Figure S1. The cervical artery CTA images of the patient.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Yang, J., Ma, M. et al. Restenosis after excimer laser coronary atherectomy and drug-coated balloon dilation in Takayasu’s arteritis: a case report and review of the literature. Thrombosis J 21, 87 (2023). https://doi.org/10.1186/s12959-023-00529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12959-023-00529-9

Keywords