Skip to main content

Association of serum immunoglobulin G (IgG) levels against two periodontal pathogens and prothrombotic state: a clinical pilot study



Periodontitis is associated with cardiovascular diseases (CVD). In our previous studies a prothrombotic state has been observed in periodontitis, which contributes to the risk of CVD. The aim of this study was to investigate whether serum IgG levels against Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) in periodontitis were associated with a prothrombotic state.

Materials and methods

Patients with moderate (n = 38) and severe periodontitis (n = 30) and controls (n = 24) were recruited. We explored correlations between serum anti-Aa and anti-Pg IgG and plasma levels of markers of prothrombotic state (von Willebrand Factor [vWF], prothrombin fragment 1+2 [F1+2], plasminogen activator inhibitor-1 [PAI-1] and D-dimer). Multivariate analyses were performed considering several major potential contributing factors.


Periodontitis patients showed higher anti-Aa IgG (p = 0.015) than controls but not for Pg (p = 0.320). In periodontitis patients, body mass index and anti-Aa IgG showed a positive correlation with vWF (β = 0.297, p = 0.010 and β = 0.248, p = 0.033 respectively).


In periodontitis, infection with Aa together with other well accepted risk factors for CVD, may play a role in increasing the risk for prothrombotic state.


Periodontitis is a chronic infectious disease of the supporting tissues of the teeth and it has been consistently associated with cardiovascular diseases (CVD) [1, 2]. One explanation in this association is that periodontitis may also cause a prothrombotic state [37]. The prothrombotic state is a propensity of blood to coagulate due to an abnormality in the coagulation and/or fibrinolysis system. In our previous study we measured well established markers of a prothrombotic state which are risk indicators for vascular ischemic events. Prothrombin factor 1+2 (F1+2) is a peptide released during the conversion of prothrombin into thrombin, which is the final step of the coagulation cascade (extrinsic pathway). Von Willebrand Factor (vWF) is expressed by endothelial cells after tissue damage and it triggers aggregation of platelets. Furthermore, vWF is involved in coagulation since it carries the factor VII of the coagulation cascade. Plasminogen activator inhibitor-1 (PAI-1) is an important inhibitor of fibrinolysis and D-dimer is a polymer released during the dissolution of the fibrin clot during fibrinolysis. In our previous study we observed elevated plasma levels of PAI-1 and vWF in periodontitis patients [3].

The systemic dissemination of periodontal pathogens from periodontal lesions seems to be at least one cause for the systemic inflammation in periodontitis and elevation of CVD risk markers. The periodontal pathogens Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) have been shown in blood and biopsies from atherosclerotic plaques [810]. IgG and IgA levels against Aa and Pg have been associated with increased risk of stroke, myocardial infarction and increased carotid artery intima-media thickness as indication for subclinical atherosclerosis [1114]. Furthermore an in vitro study showed that infection with Pg can induce a prothrombotic response by increasing the activity of PAI-1. Moreover in a meta-analysis, it was concluded that periodontal disease characterized by elevated markers of bacterial systemic exposure is associated with CVD with a stronger association than clinical parameters of periodontitis [15].

In light of these latter observations, we used in the present pilot study our previous study population and explored whether the association found between periodontitis and a prothrombotic state could be in part explained by the host response to two specific periodontal pathogens. Therefore the aim of this study is to investigate whether in periodontitis serum IgG levels against Aa and Pg are associated with systemic levels of four markers of a prothrombotic state.

Materials and methods

Study population

The study population is retrieved from a previous study [3]. On the basis of an extensive medical history by a written questionnaire and by interview, the following subjects were not included in the study: pregnant women and individuals who suffered from any given disease or chronic medical condition, apart from periodontitis, or had trauma or tooth extractions in the last two weeks, or received antibiotics within the last 3 months. We included all subjects where serum samples were available to determine levels of IgG against Aa and Pg. Absence of serum sample for several subjects (n = 38) was related to exhaustion of samples in the previous study. All details about recruitment, definition of background variables and approval of Medical Ethical committee are described before. In brief, definition of a periodontal case or a control was based on the 5th workshop guidelines [16], with the modification that for a case > 3 mm proximal bone loss in at least 2 non adjacent teeth needed to be present and for a control subject the distance between the cemento-enamel junction and the alveolar bone crest needed to be < 3 mm on recent bitewing radiographs for all present teeth. We used dental radiographs to estimate the severity of periodontal destruction as described before [17]. Patients with >7 teeth with >50% bone loss were classified as having severe periodontitis. The remainder of the periodontitis patients was classified as having moderate periodontitis.

Analysis of biochemical background variables and markers of a prothrombotic state

Systemic biochemical factors were retrieved from the data base of our previous study [3]. Background variables included total cholesterol, HDL and LDL cholesterol, triglycerides and high sensitivity CRP (hsCRP). Markers of a prothrombotic state included vWF, prothrombin fragment F1+2, PAI-1 and D-dimer.

Analyses of serum levels of Immunoglobulin G (IgG) against Aa and Pg

Serum levels of IgG against two relevant periodontal pathogens, Aa and Pg, were determined by ELISA as previously described [18], but with a modification [19]. The modification consisted of expanding the antigen mixture, to contain all the known serotypes for Aa. For Aa strains, ATCC 29523, Y4, NCTC 9710, 3381 and OM2 534 were used, representing respectively serotypes a, b, c, d and e [20]. For Pg strains, W83, HG 184, A7A1-28, ATCC 49417, HG 1690, HG 1691 and 34-4 were used, representing respectively the capsule serotypes K1-K7, as well as the uncapsulated strain 381(K-) [21].

Statistical analysis

Statistical analysis of data was performed with the SPSS package version 16.0 (SPSS, Chicago, IL, USA). Means, standard deviations, medians, interquartile ranges and frequency distributions were calculated for background variables, markers of a prothrombotic state and serum IgG's. Normal distribution of data was assessed by Kolmogorov-Smirnov goodness-of-fit test. Whenever non-normal distribution was found (p < 0.05), non-parametric tests were employed. Differences for the background variables including markers of prothrombotic state and serum IgG's among the three groups were analyzed by analysis of variance (ANOVA) or Kruskal-Wallis where appropriate. A multivariate analysis (backward stepwise linear regression with p = 0.05 to enter and p = 0.10 to leave) was performed considering vWF, F1+2, PAI-1 and D-dimer as the outcome variables and using as predictors periodontal status (2 groups [moderate and severe periodontitis]), smoking, education level, age, gender, body mass index (BMI), total cholesterol, triglycerides, ethnicity, anti-Aa and anti-Pg IgG levels. In the latter explorative parametric tests, for the non-normal distributed variables, the log-transformed values were employed. Similarly, a secondary explorative multivariate analysis was performed, but now including also controls. For all analyses, p < 0.05 values were considered statistically significant.


Table 1 presents the background variables for the current study population derived from Bizzarro et al. (2007). Periodontitis patients were older than controls (45.5 yr for the severe group, 43.8 yr for the moderate group and 38.4 yr for controls, p = 0.017) and showed lower educational level (p = 0.019). Periodontitis patients had a lower number of teeth (25.7 for the severe group and 26 for the moderate group) in comparison with controls (28.3, p = 0.010). Periodontitis patients showed higher levels of PAI-1 in comparison to controls (p = 0.009); they also showed higher values for vWF and F1+2 and lower values for D-dimer, but the differences were not statistically significant. IgG levels against Aa were significantly higher in patients than controls (p = 0.015). Values of IgG against Pg show a trend for increased levels in periodontitis (Table 1).

Table 1 Characteristics for the 3 study groups (control, moderate and severe periodontitis).

Assuming that only in periodontitis patients an infection with Aa or Pg is causing a notable immune response, we explored in periodontitis patients which of the background or systemic variables could be associated with variation in the levels of the markers of a prothrombotic state. Table 2 presents the results per marker the model reached for the periodontitis patients in the multivariate analyses. BMI and IgG levels against Aa were significantly associated with levels of vWF (β = 0.297, p = 0.010 and β = 0.248, p = 0.033 respectively). Female gender and age were significantly associated with F1+2 and a trend for an association between IgG levels against Pg and F1+2 (β = 0.227, p = 0.058). For PAI-1, severity of periodontitis showed a positive correlation (β = 0.356, p = 0.001), but there was no association with IgG against Aa and Pg. Also for D-dimer both female gender and BMI showed positive correlations, while cholesterol showed a negative correlation; IgG against Pg was retained in the final model, with a negative correlation (β = -0.190), but this association did not reach a statistical significance (p = 0.085). When the multivariate analyses were repeated including also the control subjects without periodontitis, we observed that the association between IgG against Aa and levels of vWF did not reach level of significance (β = 0.181, p = 0.072), demonstrating that indeed the exposure to a periodontal pathogen has an association with the prothrombotic marker.

Table 2 Multivariate analyses explored for periodontitis patients for markers of a prothrombotic state.


In a previous study, our group showed that systemically healthy periodontitis patients, in comparison to subjects without periodontitis, displayed higher levels of 2 markers of prothrombotic state, PAI-1 and vWF [3]. Based on these results, our aim was to investigate whether, in the same population of periodontitis patients, IgG levels against Aa and Pg were explanatory for these findings.

This question was raised by the evidence in the literature, which shows that levels of IgG against Aa and Pg have been associated with CVD. In particular, a 13-year prospective study from Pussinen et al. (2004) showed a strong association between anti-Aa and anti-Pg IgG's at baseline and the development of stroke later on. Furthermore Aa and Pg have been found in human specimens of atherosclerotic plaques [810]. However, we have no clinical evidence about the possible association between Aa and Pg with a prothrombotic state. So far, only in vitro or ex vivo studies are available. More specifically, Aa showed to have capability to induce ex vivo platelet aggregation in humans [5], while Pg showed capability to induce in vitro coagulation [22] and to enhance PAI-1 activity after in vitro infection of aortic endothelial cells with the Pg strain 381 [23].

The main finding of the current study was that in patients affected by periodontitis, in the multivariate analysis levels of IgG against Aa correlated with levels of vWF after correction and including several other potential confounding factors. Notably, this association was not longer significant when we included in the study population also the controls. This strengthens the assumption that in periodontitis patients, where the exposure to the periodontal pathogens is stronger, infection with Aa may trigger a prothrombotic effect. In fact, this effect seems to be diluted by adding in our multivariate model subjects without periodontitis and with a relatively low response to Aa. We confirm that also BMI, age, female gender, smoking and cholesterol play an important role [24]. Nevertheless, these results underline a possible role of infection with periodontal pathogens in periodontitis patients, where the immune response to these periodontal bacteria is enhanced. vWF plays an important role in inducing coagulation since it is a carrier of coagulation factor VII and, when expressed by endothelial cells, it induces platelet adhesion to the endothelium. Although we cannot give a biological explanation of the possible role of Aa in the mechanism that may provoke a prothrombotic state, we may speculate that the lipopolysaccharide (LPS) produced by Aa may trigger the endothelial cells to produce more vWF [25] or, alternatively, Aa itself may invade endothelial cells and then stimulate the release of vWF [26].

In contrast with the findings of Roth et al. (2006), we did not find a correlation between PAI-1 activity and serum IgG against Pg. An explanation could be the fact the Roth et al. studied selectively the production of PAI-1 by endothelial cells in vitro; however, in vivo, PAI-1 is produced not only by endothelial cells but also in the liver and by adipocytes. Yet, in our multivariate analysis we found in periodontitis patients a trend for a positive correlation between F1+2 and IgG levels against Pg and an inverse correlation between levels of IgG against Pg and levels of D-dimer. F1+2 is a peptide formed during the conversion of prothrombin into thrombin in the coagulation cascade and D-dimer is a marker of the turnover of fibrin dissolution in fibrinolysis, the process of breakdown of the blood clot. This might suggest that Pg may play some role in enhancing coagulation and suppressing fibrinolysis. These suggestions need to be confirmed in further research with larger populations.

There are some limitations in this study that need to be discussed. As already mentioned, this study population was retrieved from the population of our previous investigation. Now we determined the IgG levels against Aa and Pg. Unfortunately, for a number of the original study subjects these measurements could not be performed because of exhaustion of available serum. Lack of serum for some individuals (both patients and controls) led to the exclusion of these subjects and as a consequence a reduction in the population size, in comparison to the original population. Another point of discussion is the lack of information about subgingival presence of Aa and Pg in the study population. However we consider the levels of IgG against Aa and Pg as a reliable indicator of a possible infection with these periodontal pathogens. This is currently a widely used method in the literature [11, 12, 14]. Nevertheless, preliminary experiments on a group of 19 untreated periodontitis patients showed a very good correlation between the measured levels of anti-Aa IgG and the number of colony-forming units of Aa cultured from subgingival flora (r = 0.800, p < 0.001). Similar results were obtained for Pg (r = 0.650, p = 0.003).


In conclusion, this pilot study confirms that well accepted risk factors for CVD correlate with markers of prothrombotic state; these include BMI, gender, age, smoking and cholesterol. However we also propose that at least periodontal infection with Aa may also play an important role, while infection with Pg is suggestive. Further research will be necessary to confirm the findings of the current study. In general it needs to be considered that bacterial infection in addition to traditional parameters may also contribute to a prothrombotic state.

Conflict of Interest and source of funding statement

The authors declare that there are no conflicts of interest in this study. This study was supported in part by the author's institution and in part by Philips Oral Healthcare EMEA.



Body Mass Index


high sensitive C-reactive protein


not significant


not tested


von Willebrand factor


plasminogen activator inhibitor-1


prothrombin fragment 1+2


Immunoglobulins G


Arbitrary Units.


  1. Janket SJ, Baird AE, Chuang SK, Jones JA: Meta-analysis of periodontal disease and risk of coronary heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003, 95: 559-569. 10.1067/moe.2003.107

    Article  PubMed  Google Scholar 

  2. Humphrey LL, Fu R, Buckley DI, Freeman M, Helfand M: Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. J Gen Intern Med 2008, 23: 2079-2086. 10.1007/s11606-008-0787-6

    PubMed Central  Article  PubMed  Google Scholar 

  3. Bizzarro S, van der Velden U, ten Heggeler JM, Leivadaros E, Hoek FJ, Gerdes VE, et al.: Periodontitis is characterized by elevated PAI-1 activity. J Clin Periodontol 2007, 34: 574-580. 10.1111/j.1600-051X.2007.01095.x

    CAS  Article  PubMed  Google Scholar 

  4. Papapanagiotou D, Nicu EA, Bizzarro S, Gerdes VE, Meijers JC, Nieuwland R, et al.: Periodontitis is associated with platelet activation. Atherosclerosis 2009, 202: 605-611. 10.1016/j.atherosclerosis.2008.05.035

    CAS  Article  PubMed  Google Scholar 

  5. Nicu EA, Van der Velden U, Nieuwland R, Everts V, Loos BG: Elevated platelet and leukocyte response to oral bacteria in periodontitis. J Thromb Haemost 2009, 7: 162-170. 10.1111/j.1538-7836.2008.03219.x

    CAS  Article  PubMed  Google Scholar 

  6. Montebugnoli L, Servidio D, Miaton RA, Prati C, Tricoci P, Melloni C: Poor oral health is associated with coronary heart disease and elevated systemic inflammatory and haemostatic factors. J Clin Periodontol 2004, 31: 25-29. 10.1111/j.0303-6979.2004.00432.x

    CAS  Article  PubMed  Google Scholar 

  7. Taylor BA, Tofler GH, Carey HM, Morel-Kopp MC, Philcox S, Carter TR, et al.: Full-mouth tooth extraction lowers systemic inflammatory and thrombotic markers of cardiovascular risk. J Dent Res 2006, 85: 74-78. 10.1177/154405910608500113

    CAS  Article  PubMed  Google Scholar 

  8. Forner L, Larsen T, Kilian M, Holmstrup P: Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 2006, 33: 401-407. 10.1111/j.1600-051X.2006.00924.x

    Article  PubMed  Google Scholar 

  9. Nakano K, Inaba H, Nomura R, Nemoto H, Tamura K, Miyamoto E, et al.: Detection and serotype distribution of Actinobacillus actinomycetemcomitans in cardiovascular specimens from Japanese patients. Oral Microbiol Immunol 2007, 22: 136-139. 10.1111/j.1399-302X.2007.00332.x

    CAS  Article  PubMed  Google Scholar 

  10. Padilla C, Lobos O, Hubert E, Gonzalez C, Matus S, Pereira M, et al.: Periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis. J Periodontal Res 2006, 41: 350-353. 10.1111/j.1600-0765.2006.00882.x

    CAS  Article  PubMed  Google Scholar 

  11. Holmlund A, Hedin M, Pussinen PJ, Lerner UH, Lind L: Porphyromonas gingivalis (Pg) a possible link between impaired oral health and acute myocardial infarction. Int J Cardiol 2009.

    Google Scholar 

  12. Pussinen PJ, Alfthan G, Rissanen H, Reunanen A, Asikainen S, Knekt P: Antibodies to periodontal pathogens and stroke risk. Stroke 2004, 35: 2020-2023. 10.1161/01.STR.0000136148.29490.fe

    Article  PubMed  Google Scholar 

  13. Pussinen PJ, Alfthan G, Tuomilehto J, Asikainen S, Jousilahti P: High serum antibody levels to Porphyromonas gingivalis predict myocardial infarction. Eur J Cardiovasc Prev Rehabil 2004, 11: 408-411. 10.1097/00149831-200410000-00008

    PubMed  Google Scholar 

  14. Pussinen PJ, Nyyssonen K, Alfthan G, Salonen R, Laukkanen JA, Salonen JT: Serum antibody levels to Actinobacillus actinomycetemcomitans predict the risk for coronary heart disease. Arterioscler Thromb Vasc Biol 2005, 25: 833-838. 10.1161/01.ATV.0000157982.69663.59

    CAS  Article  PubMed  Google Scholar 

  15. Mustapha IZ, Debrey S, Oladubu M, Ugarte R: Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and meta-analysis. J Periodontol 2007, 78: 2289-2302. 10.1902/jop.2007.070140

    Article  PubMed  Google Scholar 

  16. Tonetti MS, Claffey N: Advances in the progression of periodontitis and proposal of definitions of a periodontitis case and disease progression for use in risk factor research. Group C consensus report of the 5th European Workshop in Periodontology. J Clin Periodontol 2005, 32(Suppl 6):210-213. 10.1111/j.1600-051X.2005.00822.x

    Article  PubMed  Google Scholar 

  17. Leivadaros E, van der Velden U, Bizzarro S, ten Heggeler JM, Gerdes VE, Hoek FJ, et al.: A pilot study into measurements of markers of atherosclerosis in periodontitis. J Periodontol 2005, 76: 121-128. 10.1902/jop.2005.76.1.121

    Article  PubMed  Google Scholar 

  18. Pussinen PJ, Vilkuna-Rautiainen T, Alfthan G, Mattila K, Asikainen S: Multiserotype enzyme-linked immunosorbent assay as a diagnostic aid for periodontitis in large-scale studies. J Clin Microbiol 2002, 40: 512-518. 10.1128/JCM.40.2.512-518.2002

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Nicu EA, Laine ML, Morre SA, Van der Velden U, Loos BG: Soluble CD14 in periodontitis. Innate Immun 2009, 15: 121-128. 10.1177/1753425908101577

    CAS  Article  PubMed  Google Scholar 

  20. Saarela M, Asikainen S, Alaluusua S, Pyhala L, Lai CH, Jousimies-Somer H: Frequency and stability of mono- or poly-infection by Actinobacillus actinomycetemcomitans serotypes a, b, c, d or e. Oral Microbiol Immunol 1992, 7: 277-279. 10.1111/j.1399-302X.1992.tb00588.x

    CAS  Article  PubMed  Google Scholar 

  21. Laine ML, Appelmelk BJ, van Winkelhoff AJ: Novel polysaccharide capsular serotypes in Porphyromonas gingivalis. J Periodontal Res 1996, 31: 278-284. 10.1111/j.1600-0765.1996.tb00494.x

    CAS  Article  PubMed  Google Scholar 

  22. Imamura T, Tanase S, Hamamoto T, Potempa J, Travis J: Activation of blood coagulation factor IX by gingipains R, arginine-specific cysteine proteinases from Porphyromonas gingivalis. Biochem J 2001, 353: 325-331. 10.1042/0264-6021:3530325

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. Roth GA, Moser B, Huang SJ, Brandt JS, Huang Y, Papapanou PN, et al.: Infection with a periodontal pathogen induces procoagulant effects in human aortic endothelial cells. J Thromb Haemost 2006, 4: 2256-2261. 10.1111/j.1538-7836.2006.02128.x

    CAS  Article  PubMed  Google Scholar 

  24. Arsenault BJ, Pibarot P, Despres JP: The quest for the optimal assessment of global cardiovascular risk: are traditional risk factors and metabolic syndrome partners in crime? Cardiology 2009, 113: 35-49. 10.1159/000165919

    Article  PubMed  Google Scholar 

  25. Patel KN, Soubra SH, Lam FW, Rodriguez MA, Rumbaut RE: Polymicrobial sepsis and endotoxemia promote microvascular thrombosis via distinct mechanisms. J Thromb Haemost 2010, 8: 1403-9. 10.1111/j.1538-7836.2010.03853.x

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. Schenkein HA, Barbour SE, Berry CR, Kipps B, Tew JG: Invasion of human vascular endothelial cells by Actinobacillus actinomycetemcomitans via the receptor for platelet-activating factor. Infect Immun 2000, 68: 5416-5419. 10.1128/IAI.68.9.5416-5419.2000

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sergio Bizzarro.

Additional information

Authors' contributions

SB participated in the design, the conduction of the study and data collection, performed the statistical analysis and he is the main author of the manuscript. EAN researched, designed and carried out the ELISA's on IgG's against Aa and Pg. UvdV provided intellectual contribution in the interpretation of the data and participated in drafting the manuscript. MLL assisted in ELISA's and the statistical analyses and helped to draft the manuscript. BGL participated substantially in the design, analyses and interpretation of data and participated in drafting the manuscript.

All authors read and approved the final manuscript.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Bizzarro, S., Nicu, E.A., van der Velden, U. et al. Association of serum immunoglobulin G (IgG) levels against two periodontal pathogens and prothrombotic state: a clinical pilot study. Thrombosis J 8, 16 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Periodontitis
  • Porphyromonas Gingivalis
  • Prothrombotic State
  • Periodontal Pathogen
  • Periodontitis Patient