Italiano J, Hartwig JH, Michelson A. Megakaryocyte development and platelet formation. Platelets. 2007;2:23–44.
Article
Google Scholar
George J. Overview of platelet structure and function. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, editors. Hemostasis and thrombosis: basic principles and clinical practice. Philadelphia: Lippincott, Williams and Wilkins; 2001. p. 381–6.
Google Scholar
Keohane EM, Smith LJ, Walenga JM. Rodak’s hematology: clinical principles and applications. 5th ed. Rivrport lane St. Louis, Missouri: Elsevier Health Sciences; 2016.
Google Scholar
Hou Y, Carrim N, Wang Y, Gallant RC, Marshall A, Ni H. Platelets in hemostasis and thrombosis: novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. Journal of biomedical research. 2015;29(6):437.
PubMed Central
Google Scholar
Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets. 2001;12(5):261–73.
Article
CAS
PubMed
Google Scholar
Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol. 2014;5:649.
Article
PubMed
PubMed Central
Google Scholar
Chabert A, Hamzeh-Cognasse H, Pozzetto B, Cognasse F, Schattner M, Gomez RM, et al. Human platelets and their capacity of binding viruses: meaning and challenges? BMC Immunol. 2015;16:26.
Article
PubMed
PubMed Central
Google Scholar
Kapur R, Semple JW. Platelets as immune-sensing cells. Blood advances Blood Adv. 2016;1(1):10–4.
Article
CAS
PubMed
Google Scholar
Cognasse F, Nguyen KA, Damien P, McNicol A, Pozzetto B, Hamzeh-Cognasse H, et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol. 2015;6:83.
Article
PubMed
PubMed Central
Google Scholar
Weyrich A, Lindemann S, Zimmerman G. The evolving role of platelets in inflammation. J Thromb Haemost. 2003;1(9):1897–905.
Article
CAS
PubMed
Google Scholar
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45.
Article
CAS
PubMed
Google Scholar
Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci. 2010;67(4):499–511.
Article
CAS
PubMed
Google Scholar
Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123(18):2759–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenne C, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35(3):254–61.
Article
CAS
PubMed
Google Scholar
Nagasawa T, Nakayasu C, Rieger AM, Barreda DR, Somamoto T, Nakao M. Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Front Immunol. 2014;5:445.
Article
PubMed
PubMed Central
Google Scholar
Meseguer J, Esteban MA, Rodriguez A. Are thrombocytes and platelets true phagocytes? Microsc Res Tech. 2002;57(6):491–7.
Article
PubMed
Google Scholar
Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. Current trends in immunology. 2015;16:65–78.
PubMed
PubMed Central
Google Scholar
Chaipan C, Soilleux EJ, Simpson P, Hofmann H, Gramberg T, Marzi A, et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006;80(18):8951-8960. Epub 2006/08/31.
Simon AY, Sutherland MR, Pryzdial EL. Dengue virus binding and replication by platelets. Blood. 2015;126(3):378–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parikh F. Infections and thrombocytopenia. J Assoc Physicians India. 2016;64(2):11–2.
PubMed
Google Scholar
Wang CS, Yao WJ, Wang ST, Chang TT, Chou P. Strong association of hepatitis C virus (HCV) infection and thrombocytopenia: implications from a survey of a community with hyperendemic HCV infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2004;39(6):790–6.
Article
Google Scholar
Hottz ED, Oliveira MF, Nunes PC, Nogueira RMR, Valls-de-Souza R, Da Poian AT, et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost. 2013;11(5):951–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonzo MT, Lacuesta TL, Dimaano EM, Kurosu T, Suarez LA, Mapua CA, et al. Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. J Infect Dis. 2012;205(8):1321–9.
Article
CAS
PubMed
Google Scholar
Hunelshausen P, Weber C. Platelets as immune cells. Bridging inflammation and cardiovascular disease. The review is part of a thematic series on mechanisms, models, and in vivo imaging of thrombus formation. Circ Res. 2007;100:27–40.
Article
Google Scholar
Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional toll-like receptor-4. Blood. 2005;106(7):2417–23.
Article
CAS
PubMed
Google Scholar
D'atri LP, Etulain J, Rivadeneyra L, Lapponi MJ, Fondevila C, Schattner M. Expression and functionality of toll-like receptor 3 in the megakaryocytic lineage. J Thromb Haemost. 2013;11:514–5.
Google Scholar
Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood. 2014;124(5):791–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, et al. Expression of toll-like receptors on human platelets. Thromb Res. 2004;113(6):379–85.
Article
CAS
PubMed
Google Scholar
Thon JN, Peters CG, Machlus KR, Aslam R, Rowley J, Macleod H, et al. T granules in human platelets function in TLR9 organization and signaling. J Cell Biol. 2012;198(4):561–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garraud O, Cognasse F. Platelet toll-like receptor expression: the link between “danger” ligands and inflammation. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy). 2010;9(5):322–33.
CAS
Google Scholar
Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006;107(2):637–41.
Article
CAS
PubMed
Google Scholar
Panigrahi S, Ma Y, Hong L, Gao D, West XZ, Salomon RG, et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyper-reactivity and thrombosis. Circ Res. 2012;112(1):103–12. CIRCRESAHA. 112.274241
D’ Atri LP, Schattner M. Platelet toll-like receptors in thromboinflammation. Frontiers in bioscience (Landmark edition). 2017;22:1867–83.
Article
Google Scholar
Martel C, Cointe S, Maurice P, Matar S, Ghitescu M, Théroux P, et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One. 2011;6(4):e18812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rambach G, Würzner R, Speth C. Complement: an efficient sword of innate immunity. Trends in Innate Immunity. Basel: Karger Publishers; 2008. p. 78-100.
Basch RS, Dolzhanskiy A, Zhang XM, Karpatkin S. The development of human megakaryocytes. II. CD4 expression occurs during haemopoietic differentiation and is an early step in megakaryocyte maturation. Br J Haematol. 1996;94(3):433–42.
Article
CAS
PubMed
Google Scholar
Riviere C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C, et al. Phenotypic and functional evidence for the expression of CXCR4 receptor during Megakaryocytopoiesis. Blood. 1999;93(5):1511–23.
CAS
PubMed
Google Scholar
Boukour S, Masse JM, Benit L, Dubart-Kupperschitt A, Cramer E. Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes. J Thromb Haemost. 2006;4(2):426–35.
Article
CAS
PubMed
Google Scholar
Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, et al. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood. 2014;124(14):2262–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kar M, Singla M, Chandele A, Kabra SK, Lodha R, Medigeshi GR. Dengue virus entry and replication does not lead to productive infection in platelets. Open forum infectious diseases. 2017;4(2):ofx051.
Article
PubMed
PubMed Central
Google Scholar
Eggerman TL, Mondoro TH, Lozier JN, Vostal JG. Adenoviral vectors do not induce, inhibit, or potentiate human platelet aggregation. Hum Gene Ther. 2002;13(1):125–8.
Article
CAS
PubMed
Google Scholar
Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci. 2010;67(4):545–56.
Article
CAS
PubMed
Google Scholar
Negrotto S, Jaquenod de Giusti C, Rivadeneyra L, Ure AE, Mena HA, Schattner M, et al. Platelets interact with Coxsackieviruses B and have a critical role in the pathogenesis of virus-induced myocarditis. Journal of thrombosis and haemostasis : JTH. 2015;13(2):271–82.
Article
CAS
PubMed
Google Scholar
Padovani JL, Corvino SM, Drexler JF, Silva GF, Pardini MI, Grotto RM. In vitro detection of hepatitis C virus in platelets from uninfected individuals exposed to the virus. Rev Soc Bras Med Trop. 2013;46(2):154–5.
Article
PubMed
Google Scholar
Zahn A, Jennings N, Ouwehand WH, Allain J-P. Hepatitis C virus interacts with human platelet glycoprotein VI. J Gen Virol. 2006;87(8):2243–51.
Article
CAS
PubMed
Google Scholar
Silva GF, Grotto RM, Verdichio-Moraes CF, Corvino SM, Ferrasi AC, Silveira LV, et al. Human platelet antigen genotype is associated with progression of fibrosis in chronic hepatitis C. J Med Virol. 2012;84(1):56–60.
Article
CAS
PubMed
Google Scholar
Zhou SH, Liang XH, Shao LN, Yu WJ, Zhao C, Liu M. Association of human platelet antigens polymorphisms with susceptibility to hepatitis C virus infection in Chinese population. International journal of immunogenetics. 2017;44(6):337–42.
Article
CAS
PubMed
Google Scholar
Verdichio-Moraes CF, Toralles-Pereira C, Grotto RM, Silva GF, Pardini MI. Allelic frequencies of HPA-1 to 5 human platelet antigens in patients infected with hepatitis C virus. J Med Virol. 2009;81(4):757–9.
Article
PubMed
Google Scholar
Blair P, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.
Article
CAS
PubMed
Google Scholar
Witte A, Chatterjee M, Lang F, Gawaz M. Platelets as a novel source of pro-inflammatory chemokine CXCL14. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017;41(4):1684–96.
Article
CAS
Google Scholar
Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391(6667):591–4.
Article
CAS
PubMed
Google Scholar
Chatterjee M, von Ungern-Sternberg SN, Seizer P, Schlegel F, Buttcher M, Sindhu NA, et al. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis. 2015;6:e1989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yount NY, Waring AJ, Gank KD, Welch WH, Kupferwasser D, Yeaman MR. Structural correlates of antimicrobial efficacy in IL-8 and related human kinocidins. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2007;1768(3):598–608.
Article
CAS
Google Scholar
Tsegaye TS, Gnirß K, Rahe-Meyer N, Kiene M, Krämer-Kühl A, Behrens G, et al. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology. 2013;10(1):48.
Article
CAS
Google Scholar
Auerbach DJ, Lin Y, Miao H, Cimbro R, DiFiore MJ, Gianolini ME, et al. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc Natl Acad Sci. 2012;109(24):9569–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker ZF, Rux AH, Riblett AM, Lee FH, Rauova L, Cines DB, et al. Platelet factor 4 inhibits and enhances HIV-1 infection in a concentration-dependent manner by modulating viral attachment. AIDS Res Hum Retrovir. 2016;32(7):705–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y-Q, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun. 2002;70(12):6524–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torre D, Pugliese A. Platelets and HIV-1 infection: old and new aspects. Curr HIV Res. 2008;6(5):411–8.
Article
CAS
PubMed
Google Scholar
Mohan KV, Rao SS, Atreya CD. Antiviral activity of selected antimicrobial peptides against vaccinia virus. Antivir Res. 2010;86(3):306–11.
Article
CAS
PubMed
Google Scholar
Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, et al. Human α-defensins block papillomavirus infection. Proc Natl Acad Sci. 2006;103(5):1516–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begonja AJ, Gambaryan S, Geiger J, Aktas B, Pozgajova M, Nieswandt B, et al. Platelet NAD (P) H-oxidase–generated ROS production regulates αIIbβ3-integrin activation independent of the NO/cGMP pathway. Blood. 2005;106(8):2757–60.
Article
CAS
PubMed
Google Scholar
Wachowicz B, Olas B, Zbikowska HM, Buczynski A. Generation of reactive oxygen species in blood platelets. Platelets. 2002;13(3):175–82.
Article
CAS
PubMed
Google Scholar
Zander DM, Klinger M. The blood platelets contribution to innate host defense–what they have learned from their big brothers. Biotechnol J. 2009;4(6):914–26.
Article
CAS
PubMed
Google Scholar
Tilton C, Clippinger AJ, Maguire T, Alwine JC. Human cytomegalovirus induces multiple means to combat reactive oxygen species. J Virol. 2011;85(23):12585–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youssefian T, Drouin A, Massé J-M, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood. 2002;99(11):4021–9.
Article
CAS
PubMed
Google Scholar
Jansen AG, Low HZ, van den Brand J, van Riel D, Osterhaus A, van der Vries E. Platelets can phagocytose Influenza virus which may contribute to the occurrence of thrombocytopenia during Influenza infection. Am Soc Hematology. 2016;128(22):1358.
Google Scholar
Kullaya VI, de Mast Q, van der Ven A, El Moussaoui H, Kibiki G, Simonetti E, et al. Platelets modulate innate immune response against human respiratory syncytial virus in vitro. Viral Immunol. 2017;30(8):576–81.
Article
CAS
PubMed
Google Scholar
Hartwell DW, Mayadas TN, Berger G, Frenette PS, Rayburn H, Hynes RO, et al. Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J Cell Biol. 1998;143(4):1129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A, De Assis EF, Vals-de-Souza R, Castro-Faria-Neto HC, et al. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol. 2014;193(4):1864–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, et al. Platelets present antigen in the context of MHC class I. J Immunol. 2012;189(2):916–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iannacone M, Sitia G, Isogawa M, Whitmire JK, Marchese P, Chisari FV, et al. Platelets prevent IFN-α/β-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci. 2008;105(2):629–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Triantafilou K, Triantafilou M, Takada Y, Fernandez N. Human parechovirus 1 utilizes integrins αvβ3 and αvβ1 as receptors. J Virol. 2000;74(13):5856–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelsen-Salz B, Eggers HJ, Zimmermann H. Integrin αvβ3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. J Gen Virol. 1999;80(9):2311–3.
Article
CAS
PubMed
Google Scholar
Fleming FE, Graham KL, Takada Y, Coulson BS. Determinants of the specificity of rotavirus interactions with the α2β1 integrin. J Biol Chem. 2011;286(8):6165–74.
Article
CAS
PubMed
Google Scholar
Mackow E, Gavrilovskaya I. Cellular receptors and hantavirus pathogenesis. Hantaviruses: Springer; 2001. p. 91–115.
Google Scholar
Alvarez CP, Lasala F, Carrillo J, Muñiz O, Corbí AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol. 2002;76(13):6841–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimojima M, Ströher U, Ebihara H, Feldmann H, Kawaoka Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol. 2012;86(4):2067–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad A, Menezes J. Binding of the Epstein-Barr virus to human platelets causes the release of transforming growth factor-beta. J Immunol. 1997;159(8):3984–8.
CAS
PubMed
Google Scholar