Ruggeri ZM. Platelets in atherothrombosis. Nat Med. 2002;8:1227–34.
Article
CAS
PubMed
Google Scholar
Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451:914–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu XR, Gallant RC, Ni H. Platelets, immune-mediated thrombocytopenias, and fetal hemorrhage. Thromb Res. 2016;141 Suppl 2:S76–9.
Article
CAS
PubMed
Google Scholar
Ni H, Freedman J. Platelets in hemostasis and thrombosis: role of integrins and their ligands. Transfus Apher Sci. 2003;28:257–64.
Article
PubMed
Google Scholar
Yang H, Reheman A, Chen P, Zhu G, Hynes RO, Freedman J, et al. Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. J Thromb Haemost. 2006;4:2230–7.
Article
CAS
PubMed
Google Scholar
Wang Y, Gallant RC, Ni H. Extracellular matrix proteins in the regulation of thrombus formation. Curr Opin Hematol. 2016;23:280–7.
Article
CAS
PubMed
Google Scholar
Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest. 1989;84:1440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunne E, Spring CM, Reheman A, Jin W, Berndt MC, Newman DK, et al. Cadherin 6 has a functional role in platelet aggregation and thrombus formation. Arterioscler Thromb Vasc Biol. 2012;32:1724–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359:848–51.
Article
CAS
PubMed
Google Scholar
Yang H, Lang S, Zhai Z, Li L, Kahr WH, Chen P, et al. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood. 2009;114:425–36.
Article
CAS
PubMed
Google Scholar
Nurden AT. Platelet membrane glycoproteins: a historical review. Semin Thromb Hemost. 2014;40:577–84.
Article
CAS
PubMed
Google Scholar
Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood. 1998;91:4397–418.
CAS
PubMed
Google Scholar
Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med. 2011;17:1423–36.
Article
CAS
PubMed
Google Scholar
Reheman A, Xu X, Reddy EC, Ni H. Targeting activated platelets and fibrinolysis: hitting two birds with one stone. Circ Res. 2014;114:1070–3.
Article
CAS
PubMed
Google Scholar
Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–60.
Article
Google Scholar
Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010;9:154–69.
Article
CAS
PubMed
Google Scholar
Franchi F, Angiolillo DJ. Novel antiplatelet agents in acute coronary syndrome. Nat Rev Cardiol. 2015;12:30–47.
Article
CAS
PubMed
Google Scholar
Gachet C. Antiplatelet drugs: which targets for which treatments? J Thromb Haemost. 2015;13 Suppl 1:S313–22.
Article
CAS
PubMed
Google Scholar
Hou Y, Carrim N, Wang Y, Gallant RC, Marshall A, Ni H. Platelets in hemostasis and thrombosis: novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res. 2015;29:437–44.
PubMed Central
Google Scholar
Wang H, Bang KW, Blanchette VS, Nurden AT, Rand ML. Phosphatidylserine exposure, microparticle formation and mitochondrial depolarisation in Glanzmann thrombasthenia platelets. Thromb Haemost. 2014;111:1184–6.
Article
CAS
PubMed
Google Scholar
Wang Y, Reheman A, Spring CM, Kalantari J, Marshall AH, Wolberg AS, et al. Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Invest. 2014;124:4281–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci. 2016;73(17):3265–77. doi:10.1007/s00018-016-2225-y.
Article
CAS
PubMed
Google Scholar
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci. 2016. Published online:1–69. doi: 10.1080/10408363.2016.1200008.
Metharom P, Berndt MC, Baker RI, Andrews RK. Current state and novel approaches of antiplatelet therapy. Arterioscler Thromb Vasc Biol. 2015;35:1327–38.
Article
CAS
PubMed
Google Scholar
Michelson AD. Advances in antiplatelet therapy. Hematology Am Soc Hematol Educ Program. 2011;2011:62–9.
PubMed
Google Scholar
Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the ‘magic bullet’. Nat Rev Drug Discov. 2003;2:775–89.
Article
CAS
PubMed
Google Scholar
Morrow DA, Braunwald E, Bonaca MP, Ameriso SF, Dalby AJ, Fish MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–13.
Article
CAS
PubMed
Google Scholar
Adminstration USFaD. Drug Trials Snapshot Zontivity (vorapaxar). 2014. http://www.fda.gov/Drugs/InformationOnDrugs/ucm423935.htm. Accessed 15 June 2016.
ClinicalTrials.gov. 2011. https://clinicaltrials.gov/ct2/show/NCT00527943?term=Vorapaxar&rank=5. Accessed 15 June 2016.
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.
Article
CAS
PubMed
Google Scholar
Mou Y, Ni H, Wilkins JA. The selective inhibition of beta 1 and beta 7 integrin-mediated lymphocyte adhesion by bacitracin. J Immunol. 1998;161:6323–9.
CAS
PubMed
Google Scholar
Clemetson KJ, Clemetson JM. Platelet receptors. In: Michelson AD, editor. Platelets. 3rd ed. Amsterdam: Academic Press/Elsevier; 2013. p. 169–94.
Chapter
Google Scholar
Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–12.
Article
CAS
PubMed
Google Scholar
Tamura S, Suzuki-Inoue K, Tsukiji N, Shirai T, Sasaki T, Osada M, et al. Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood. 2016;127:1701–10.
Article
PubMed
Google Scholar
Li C, Li J, Li Y, Lang S, Yougbare I, Zhu G, et al. Crosstalk between platelets and the immune system: old systems with new discoveries. Adv Hematol. 2012;2012:384685.
PubMed
PubMed Central
Google Scholar
Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11:264–74.
Article
CAS
PubMed
Google Scholar
Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2003;23:2131–7.
Article
CAS
PubMed
Google Scholar
Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res. 2008;78:8–17.
Article
CAS
PubMed
Google Scholar
Lindemann S, Kramer B, Seizer P, Gawaz M. Platelets, inflammation and atherosclerosis. J Thromb Haemost. 2007;5 Suppl 1:203–11.
Article
CAS
PubMed
Google Scholar
Murphy AJ, Bijl N, Yvan-Charvet L, Welch CB, Bhagwat N, Reheman A, et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med. 2013;19:586–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, et al. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest. 2014;124:273–84.
Article
CAS
PubMed
Google Scholar
Navarro-Nunez L, Langan SA, Nash GB, Watson SP. The physiological and pathophysiological roles of platelet CLEC-2. Thromb Haemost. 2013;109:991–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem. 2012;287:22241–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herzog BH, Fu J, Wilson SJ, Hess PR, Sen A, McDaniel JM, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Italiano Jr JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111:1227–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee M, Huang Z, Zhang W, Jiang L, Hultenby K, Zhu L, et al. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood. 2011;117:3907–11.
Article
CAS
PubMed
Google Scholar
Yougbare I, Lang S, Yang H, Chen P, Zhao X, Tai WS, et al. Maternal anti-platelet beta3 integrins impair angiogenesis and cause intracranial hemorrhage. J Clin Invest. 2015;125:1545–56.
Article
PubMed
PubMed Central
Google Scholar
Li C, Piran S, Chen P, Lang S, Zarpellon A, Jin JW, et al. The maternal immune response to fetal platelet GPIbalpha causes frequent miscarriage in mice that can be prevented by intravenous IgG and anti-FcRn therapies. J Clin Invest. 2011;121:4537–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yougbare I, Wei-She T, Zdravic D, Chen P, Zhu G, Leong-Poi H, et al. Natural killer cells contribute to pathophysiology of placenta leading to miscarriage in fetal and neonatal alloimmune thrombocytopenia. Blood. 2015;126:2254.
Article
CAS
Google Scholar
Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012;2:1091–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A. 2014;111:E3053–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126:582–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo SZ, Mo X, Afshar-Kharghan V, Srinivasan S, Lopez JA, Li R. Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood. 2007;109:603–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson SP. The growing complexity of platelet aggregation. Blood. 2007;109:5087–95.
Article
CAS
PubMed
Google Scholar
Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res. 2007;100:1673–85.
Article
CAS
PubMed
Google Scholar
Huizinga EG, Tsuji S, Romijn RA, Schiphorst ME, de Groot PG, Sixma JJ, et al. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science. 2002;297:1176–9.
Article
CAS
PubMed
Google Scholar
Verhenne S, Denorme F, Libbrecht S, Vandenbulcke A, Pareyn I, Deckmyn H, et al. Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood. 2015;126:1715–22.
Article
CAS
PubMed
Google Scholar
Dumas JJ, Kumar R, Seehra J, Somers WS, Mosyak L. Crystal structure of the GpIbalpha-thrombin complex essential for platelet aggregation. Science. 2003;301:222–6.
Article
CAS
PubMed
Google Scholar
Celikel R, McClintock RA, Roberts JR, Mendolicchio GL, Ware J, Varughese KI, et al. Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein Ibalpha. Science. 2003;301:218–21.
Article
CAS
PubMed
Google Scholar
Andrews RK, Berndt MC. The GPIb-IX-V Complex. In: Michelson AD, editor. Platelets. 3rd ed. Amsterdam: Academic Press/Elsevier; 2013. p. 195–213.
Chapter
Google Scholar
De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem. 2001;276:4692–8.
Article
PubMed
Google Scholar
Ramakrishnan V, DeGuzman F, Bao M, Hall SW, Leung LL, Phillips DR. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc Natl Acad Sci U S A. 2001;98:1823–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni H, Ramakrishnan V, Ruggeri ZM, Papalia JM, Phillips DR, Wagner DD. Increased thrombogenesis and embolus formation in mice lacking glycoprotein V. Blood. 2001;98:368–73.
Article
CAS
PubMed
Google Scholar
Jurk K, Clemetson KJ, de Groot PG, Brodde MF, Steiner M, Savion N, et al. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J. 2003;17:1490–2.
CAS
PubMed
Google Scholar
Baglia FA, Badellino KO, Li CQ, Lopez JA, Walsh PN. Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem. 2002;277:1662–8.
Article
CAS
PubMed
Google Scholar
Bradford HN, Pixley RA, Colman RW. Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem. 2000;275:22756–63.
Weeterings C, de Groot PG, Adelmeijer J, Lisman T. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface. Blood. 2008;112:3227–33.
Article
CAS
PubMed
Google Scholar
Chavakis T, Santoso S, Clemetson KJ, Sachs UJ, Isordia-Salas I, Pixley RA, et al. High molecular weight kininogen regulates platelet-leukocyte interactions by bridging Mac-1 and glycoprotein Ib. J Biol Chem. 2003;278:45375–81.
Article
CAS
PubMed
Google Scholar
Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, et al. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med. 1999;190:803–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun. 2015;6:7835.
Article
PubMed
Google Scholar
Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med. 2000;192:193–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandraratne S, von Bruehl ML, Pagel JI, Stark K, Kleinert E, Konrad I, et al. Critical role of platelet glycoprotein ibalpha in arterial remodeling. Arterioscler Thromb Vasc Biol. 2015;35:589–97.
Article
CAS
PubMed
Google Scholar
Li J, van der Wal DE, Zhu G, Xu M, Yougbare I, Ma L, et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun. 2015;6:7737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Callum JL, Lin Y, Zhou Y, Zhu G, Ni H. Severe platelet desialylation in a patient with glycoprotein Ib/IX antibody-mediated immune thrombocytopenia and fatal pulmonary hemorrhage. Haematologica. 2014;99:e61–3.
Article
PubMed
PubMed Central
Google Scholar
Gresele P, Momi S. Inhibitors of the interaction between von Willebrand factor and platelet GPIb/IX/V. Handb Exp Pharmacol. 2012;(210):287–309.
Article
CAS
Google Scholar
Ulrichts H, Silence K, Schoolmeester A, de Jaegere P, Rossenu S, Roodt J, et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood. 2011;118:757–65.
Article
CAS
PubMed
Google Scholar
Bartunek J, Barbato E, Heyndrickx G, Vanderheyden M, Wijns W, Holz JB. Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res. 2013;6:355–63.
Article
PubMed
Google Scholar
Muller O, Bartunek J, Hamilos M, Berza CT, Mangiacapra F, Ntalianis A, et al. von Willebrand factor inhibition improves endothelial function in patients with stable angina. J Cardiovasc Transl Res. 2013;6:364–70.
Article
PubMed
Google Scholar
Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knobl P, Wu H, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374:511–22.
Article
CAS
PubMed
Google Scholar
Lammle B. Thrombotic microangiopathy: caplacizumab accelerates resolution of acute acquired TTP. Nat Rev Nephrol. 2016;12:259–60.
Article
PubMed
CAS
Google Scholar
Von VA. Willebrand factor--a new target for TTP treatment? N Engl J Med. 2016;374:583–5.
Article
Google Scholar
Blombery P, Scully M. Management of thrombotic thrombocytopenic purpura: current perspectives. J Blood Med. 2014;5:15–23.
PubMed
PubMed Central
Google Scholar
Lei X, Reheman A, Hou Y, Zhou H, Wang Y, Marshall AH, et al. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost. 2014;111:279–89.
Article
CAS
PubMed
Google Scholar
Hou Y, Li BX, Dai X, Yang Z, Qian F, Zhang G, et al. The first in vitro and in vivo assessment of anfibatide, a novel glycoprotein ib antagonist, in mice and in a phase i human clinical trial. Blood. 2013;122:577.
Google Scholar
Li B, Dai X, Yang Z, Qian F, Zhang G, Xu Z, et al. First ex vivo and in vivo assessment of anfibatide, a novel glycoprotein Ib-IV-V complex antagonist, in healthy human volunteers in phase I clinical trial. J Thromb Haemost. 2013;11 Suppl 2:23.
Google Scholar
Nieswandt B, Kleinschnitz C, Stoll G. Ischaemic stroke: a thrombo-inflammatory disease? J Physiol. 2011;589:4115–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood. 2008;112:3555–62.
Article
CAS
PubMed
Google Scholar
Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation. 2007;115:2323–30.
Article
CAS
PubMed
Google Scholar
Li TT, Fan ML, Hou SX, Li XY, Barry DM, Jin H, Luo SY, Kong F, Lau LF, Dai XR, Zhang GH, Zhou LL. A novel snake venomderived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury. Br J Pharmacol.
Fontayne A, Meiring M, Lamprecht S, Roodt J, Demarsin E, Barbeaux P, et al. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb Haemost. 2008;100:670–7.
CAS
PubMed
Google Scholar
Hennan JK, Swillo RE, Morgan GA, Leik CE, Brooks JM, Shaw GD, et al. Pharmacologic inhibition of platelet vWF-GPIb alpha interaction prevents coronary artery thrombosis. Thromb Haemost. 2006;95:469–75.
CAS
PubMed
Google Scholar
Ni H, Zhu G. Novel monoclonal antibodies against platelet GPIb-alpha: potential anti-thrombotic drugs and research reagents for study of thrombosis and hemostasis. 2012. US8323652.
Google Scholar
Moroi AJ, Watson SP. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol. 2015;94:186–94.
Article
CAS
PubMed
Google Scholar
Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015;126:1601–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126:683–91.
Article
CAS
PubMed
Google Scholar
Bigalke B, Stellos K, Geisler T, Kremmer E, Seizer P, May AE, et al. Expression of platelet glycoprotein VI is associated with transient ischemic attack and stroke. Eur J Neurol. 2010;17:111–7.
Article
CAS
PubMed
Google Scholar
Induruwa I, Jung SM, Warburton EA. Beyond antiplatelets: the role of glycoprotein VI in ischemic stroke. Int J Stroke. 2016. doi:10.1177/1747493016654532.
PubMed
Google Scholar
Al-Tamimi M, Gardiner EE, Thom JY, Shen Y, Cooper MN, Hankey GJ, et al. Soluble glycoprotein VI is raised in the plasma of patients with acute ischemic stroke. Stroke. 2011;42:498–500.
Article
CAS
PubMed
Google Scholar
Stoll G, Kleinschnitz C, Nieswandt B. Combating innate inflammation: a new paradigm for acute treatment of stroke? Ann N Y Acad Sci. 2010;1207:149–54.
Article
CAS
PubMed
Google Scholar
Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood. 2010;115:3632–9.
Article
CAS
PubMed
Google Scholar
Stegner D, Haining EJ, Nieswandt B. Targeting glycoprotein VI and the immunoreceptor tyrosine-based activation motif signaling pathway. Arterioscler Thromb Vasc Biol. 2014;34:1615–20.
Article
CAS
PubMed
Google Scholar
Dutting S, Bender M, Nieswandt B. Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol Sci. 2012;33:583–90.
Article
PubMed
CAS
Google Scholar
Pachel C, Mathes D, Arias-Loza AP, Heitzmann W, Nordbeck P, Deppermann C, et al. Inhibition of platelet GPVI protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol. 2016;36:629–35.
Article
CAS
PubMed
Google Scholar
Goebel S, Li Z, Vogelmann J, Holthoff HP, Degen H, Hermann DM, et al. The GPVI-Fc fusion protein Revacept improves cerebral infarct volume and functional outcome in stroke. PLoS One. 2013;8:e66960.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ungerer M, Rosport K, Bultmann A, Piechatzek R, Uhland K, Schlieper P, et al. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation. 2011;123:1891–9.
Article
CAS
PubMed
Google Scholar
ClinicalTrials.gov. 2015. https://clinicaltrials.gov/ct2/show/NCT01645306?term=Revacept&rank=1
. Accessed 15 June 2016.
Ono K, Ueda H, Yoshizawa Y, Akazawa D, Tanimura R, Shimada I, et al. Structural basis for platelet antiaggregation by angiotensin II type 1 receptor antagonist losartan (DuP-753) via glycoprotein VI. J Med Chem. 2010;53:2087–93.
Article
CAS
PubMed
Google Scholar
Muzard J, Bouabdelli M, Zahid M, Ollivier V, Lacapere JJ, Jandrot-Perrus M, et al. Design and humanization of a murine scFv that blocks human platelet glycoprotein VI in vitro. FEBS J. 2009;276:4207–22.
Article
CAS
PubMed
Google Scholar
Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110:599–611.
Article
CAS
PubMed
Google Scholar
Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, et al. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science. 2003;300:795–8.
Article
CAS
PubMed
Google Scholar
Vinogradova O, Vaynberg J, Kong X, Haas TA, Plow EF, Qin J. Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proc Natl Acad Sci U S A. 2004;101:4094–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, et al. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell. 2002;110:587–97.
Article
CAS
PubMed
Google Scholar
Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest. 2000;106:385–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function. Nature. 1999;401:808–11.
Article
CAS
PubMed
Google Scholar
Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Cullere M, et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest. 1999;103:229–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reheman A, Yang H, Zhu G, Jin W, He F, Spring CM, et al. Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor. Blood. 2009;113:1809–17.
Article
CAS
PubMed
Google Scholar
Reheman A, Gross P, Yang H, Chen P, Allen D, Leytin V, et al. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J Thromb Haemost. 2005;3:875–83.
Article
CAS
PubMed
Google Scholar
Topol EJ, Byzova TV, Plow EF. Platelet GPIIb-IIIa blockers. Lancet. 1999;353:227–31.
Article
CAS
PubMed
Google Scholar
Phillips DR, Scarborough RM. Clinical pharmacology of eptifibatide. Am J Cardiol. 1997;80:11B–20B.
Article
CAS
PubMed
Google Scholar
Egbertson MS, Chang CT, Duggan ME, Gould RJ, Halczenko W, Hartman GD, et al. Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp. J Med Chem. 1994;37:2537–51.
Article
CAS
PubMed
Google Scholar
Schneider DJ. Anti-platelet therapy: glycoprotein IIb-IIIa antagonists. Br J Clin Pharmacol. 2011;72:672–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coller BS. alphaIIbbeta3: structure and function. J Thromb Haemost. 2015;13 Suppl 1:S17–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I. Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. Cochrane Database Syst Rev. 2014;3:CD005208.
PubMed
Google Scholar
Li J, Vootukuri S, Shang Y, Negri A, Jiang JK, Nedelman M, et al. RUC-4: a novel alphaIIbbeta3 antagonist for prehospital therapy of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34:2321–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong JP, Stehle T, Goodman SL, Arnaout MA. A novel adaptation of the integrin PSI domain revealed from its crystal structure. J Biol Chem. 2004;279:40252–4.
Article
CAS
PubMed
Google Scholar
Zang Q, Springer TA. Amino acid residues in the PSI domain and cysteine-rich repeats of the integrin beta2 subunit that restrain activation of the integrin alpha(X)beta(2). J Biol Chem. 2001;276:6922–9.
Article
CAS
PubMed
Google Scholar
Ni H, Li A, Simonsen N, Wilkins JA. Integrin activation by dithiothreitol or Mn2+ induces a ligand-occupied conformation and exposure of a novel NH2-terminal regulatory site on the beta1 integrin chain. J Biol Chem. 1998;273:7981–7.
Article
CAS
PubMed
Google Scholar
Yan B, Smith JW. A redox site involved in integrin activation. J Biol Chem. 2000;275:39964–72.
Article
CAS
PubMed
Google Scholar
Essex DW, Li M. Redox control of platelet aggregation. Biochemistry. 2003;42:129–36.
Article
CAS
PubMed
Google Scholar
Manickam N, Ahmad SS, Essex DW. Vicinal thiols are required for activation of the alphaIIbbeta3 platelet integrin. J Thromb Haemost. 2011;9:1207–15.
Article
CAS
PubMed
Google Scholar
Wang L, Wu Y, Zhou J, Ahmad SS, Mutus B, Garbi N, et al. Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the alphaIIbbeta3 integrin. Blood. 2013;122:3642–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrim N, Zhu G, Reddy E, Xu M, Xu X, Wang Y, et al. Integrin PSI domain has endogenous thiol isomerase function and is a novel target for anti-thrombotic therapy. J Thromb Haemost. 2015;13(Supplement S2):60.
Google Scholar
Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res. 2014;114:1083–93.
Article
CAS
PubMed
Google Scholar
Fuentes RE, Zaitsev S, Ahn HS, Hayes V, Kowalska M, Lambert MP, et al. A chimeric platelet-targeted urokinase prodrug selectively blocks new thrombus formation. J Clin Invest. 2016;126:483–94.
Article
PubMed
Google Scholar
Schaff M, Tang C, Maurer E, Bourdon C, Receveur N, Eckly A, et al. Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation. 2013;128:541–52.
Article
CAS
PubMed
Google Scholar
Miller MW, Basra S, Kulp DW, Billings PC, Choi S, Beavers MP, et al. Small-molecule inhibitors of integrin alpha2beta1 that prevent pathological thrombus formation via an allosteric mechanism. Proc Natl Acad Sci U S A. 2009;106:719–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcinkiewicz C, Lobb RR, Marcinkiewicz MM, Daniel JL, Smith JB, Dangelmaier C, et al. Isolation and characterization of EMS16, a C-lectin type protein from Echis multisquamatus venom, a potent and selective inhibitor of the alpha2beta1 integrin. Biochemistry. 2000;39:9859–67.
Article
CAS
PubMed
Google Scholar
Arlinghaus FT, Momic T, Ammar NA, Shai E, Spectre G, Varon D, et al. Identification of alpha2beta1 integrin inhibitor VP-i with anti-platelet properties in the venom of Vipera palaestinae. Toxicon. 2013;64:96–105.
Article
CAS
PubMed
Google Scholar
Piotrowicz RS, Orchekowski RP, Nugent DJ, Yamada KY, Kunicki TJ. Glycoprotein Ic-IIa functions as an activation-independent fibronectin receptor on human platelets. J Cell Biol. 1988;106:1359–64.
Article
CAS
PubMed
Google Scholar
Przyklenk K, Frelinger 3rd AL, Linden MD, Whittaker P, Li Y, Barnard MR, et al. Targeted inhibition of the serotonin 5HT2A receptor improves coronary patency in an in vivo model of recurrent thrombosis. J Thromb Haemost. 2010;8:331–40.
Article
CAS
PubMed
Google Scholar
Ni H. The platelet “sugar high” in diabetes. Blood. 2012;119:5949–51.
Article
CAS
PubMed
Google Scholar
Cameron-Vendrig A, Reheman A, Siraj MA, Xu XR, Wang Y, Lei X, et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes. 2016;65:1714–23.
Article
PubMed
Google Scholar
Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47.
Article
CAS
PubMed
Google Scholar
Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123:2768–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Villani MP, Patel UK, Keith Jr JC, Schaub RG. Recombinant soluble form of PSGL-1 accelerates thrombolysis and prevents reocclusion in a porcine model. Circulation. 1999;99:1363–9.
Article
CAS
PubMed
Google Scholar
Bedard PW, Clerin V, Sushkova N, Tchernychev B, Antrilli T, Resmini C, et al. Characterization of the novel P-selectin inhibitor PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h] quinoline-4-carboxylic acid] in vitro and in rodent models of vascular inflammation and thrombosis. J Pharmacol Exp Ther. 2008;324:497–506.
Article
CAS
PubMed
Google Scholar
Meier TR, Myers Jr DD, Wrobleski SK, Zajkowski PJ, Hawley AE, Bedard PW, et al. Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation. Thromb Haemost. 2008;99:343–51.
CAS
PubMed
Google Scholar
Kolandaivelu K, Bhatt DL. Novel antiplatelet therapies. In: Michelson AD, editor. Platelets. 3rd ed. Amsterdam: Academic Press/Elsevier; 2013. p. 1185–213.
Chapter
Google Scholar
Conde ID, Kleiman NS. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003;348:2575–7.
Article
PubMed
Google Scholar
Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res. 2001;89:1092–103.
Article
CAS
PubMed
Google Scholar
Lin J, Kakkar V, Lu X. Essential roles of toll-like receptors in atherosclerosis. Curr Med Chem. 2016;23:431–54.
Article
CAS
PubMed
Google Scholar
Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegard KT, et al. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis. 2015;241:480–94.
Article
CAS
PubMed
Google Scholar
Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med. 2010;38:S495–501.
Article
PubMed
Google Scholar
Husain M, Aameron-Vendrig A, Ni H. Methods for inhibiting platelet aggregation using glp-1 receptor agonists. Google Patents; 2014. WO2014066992.